Skip to main content

Membrane Processes for Microalgae in Carbonation and Wastewater Treatment

  • Chapter
Advances in Bioprocess Technology

Abstract

The objective of this work is to present the integration of membrane processes in the field of bioenergy resource and wastewater treatment using microalgae. There are two main processes involved: carbonation and separation, which were conducted and reported as a separated work within this chapter. The chapter begins with the introduction of membrane processes, followed by carbonation of microalgae and separation of biomass from the wastewater effluent. The experimental work on the carbonation aims to evaluate the effectiveness of hydrophobic hollow fibre membrane in transporting CO2 into microalgae culture and microalgae accumulation within the membrane. The experimental work on the separation process of microalgae biomass from the wastewater effluent on the other hand, aims to evaluate Ultrafiltration (UF) membrane capability in removing BOD and COD as well as its ability to retain microalgae biomass which were used by the turbidity reading of the membrane permeate. The application of hydrophobic membrane in the carbonation process has increased the carbonation efficiency up to 83 % in comparison with the carbonation without membrane and only a small amount of mirage was accumulated within the membrane. The experimental result also shows that, the carbonised microalgae can be further used for wastewater treatment. Based on the result of separation process of microalgae biomass of wastewater effluent, the UF membrane utilization shows high separation efficiency in turbidity to lower than 5 Fau, and was able to facilitate in nutrient removal for less time required compared to the biological treatment without application of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, A. L., Mat Yasin, N. H., Derek, C. J. C., & Lim, J. K. (2012). Cross flow microfiltration of microalgae biomass for biofuel production. Desalination, 302, 65–70.

    Article  CAS  Google Scholar 

  • Anselme, C., Mandra, V., Baudin, I., & Mallevialle, J. (1993). Optimum use of membrane processes in drinking water treatment. Water Supply, 12, 1–2.

    Google Scholar 

  • Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28, 64–70.

    Article  Google Scholar 

  • Babel, S., Takizawa, S., & Ozaki, H. (2002). Factors affecting seasonal variation of membrane filtration resistance caused by Chlorella algae. Water Research, 36, 1193–1202.

    Article  CAS  Google Scholar 

  • Babel, S., & Takizawa, S. (2010). Microfiltration membrane fouling and cake behaviour during algal filtration. Desalination, 261, 46–51.

    Article  CAS  Google Scholar 

  • Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369.

    Article  CAS  Google Scholar 

  • Caldwell, D. H. (1946). Sewage oxidation ponds-performance, operation and design. Sewage Works Journal, 18, 433–458.

    CAS  Google Scholar 

  • Castaing, J. B., Massé, A., Pontie, M., Sechet, V., Haure, J., & Jaouen, P. (2010). Investigating submerged ultrafiltration (UF) and microfiltration (MF) membranes for seawater pre-treatment dedicated to total removal of undesirable micro-algae. Desalination, 253, 71–77.

    Article  CAS  Google Scholar 

  • Chen, C. Y., & Durbin, E. G. (1994). Effects of pH on the growth and carbon uptake of marine phytoplankton. Marine Ecology Progress Series, 109(83–94), 84–93.

    Google Scholar 

  • Chen, V., Fane, A. G., Madaeni, S., & Wenten, I. G. (1997). Particle deposition during membrane filtration of colloids: Transition between concentration polarization and cake formation. Journal of Membrane Science, 125, 109–122.

    Article  CAS  Google Scholar 

  • Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101, 3097–3105.

    Article  CAS  Google Scholar 

  • Cho, S., Lee, N., Park, S., Yu, J., Luong, T. T., Oh, Y. K., & Lee, T. (2013). Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresource Technology, 131, 515–520.

    Article  CAS  Google Scholar 

  • Choi, H., Zhang, K., Doinysiou, D. D., Oether, D. B., & Sorial, G. A. (2005). Influence of cross-flow velocity on membrane performance during filtration of biological suspension. Journal of Membrane Science, 248, 189–199.

    Article  CAS  Google Scholar 

  • Chow, C. W. K., Panglisch, S., House, J., et al. (1997). A study of membrane filtration for the removal of cyanobacterial cells. Journal of Water SRT—Aqua, 46(6), 324–334.

    CAS  Google Scholar 

  • Craggs, R. J., McAuley, P. J., & Smith, J. V. (1997). Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Resources, 31(7), 1701–1707.

    CAS  Google Scholar 

  • Davis, M. L., & Masten, S. J. (2004). Principles of Environmental Engineering and Science (p. 704). New York: McGraw-Hill Higher Education.

    Google Scholar 

  • Davis, R., Aden, A., & Pienkos, P. (2011). Techno-economic analysis of autotrophic microalgae for fuel production. Applied Energy, 88, 3524–3531.

    Article  Google Scholar 

  • Drews, A., Lee, C. H., & Kraume, M. (2006). Membrane fouling—A review on the role of EPS. Desalination, 200, 186–188.

    Article  CAS  Google Scholar 

  • Drioli, E., & Paul, D. R. (2007). Preface: Advanced membrane technology III—Membrane engineering for process intensification conference. Industrial and Engineering Chemistry Research, 46, 2235.

    Article  CAS  Google Scholar 

  • Frappart, M., Masse, A., Jaffrin, M. Y., Pruvost, J., & Jaouen, P. (2011). Influence of hydrodynamics in tangential and dynamic ultrafiltration systems for microalgae separation. Desalination, 265, 279–283.

    Article  CAS  Google Scholar 

  • Gantar, M., Obreht, Z., & Dalmacija, B. (1991). Nutrient removal and algal succession during the growth of spirulina plantensis and scenedesmus quadricauda on swine wastewater. Bioresource Technology, 36, 167–171.

    Article  CAS  Google Scholar 

  • GDP. (2013). Data sheet report. Retrieved from http://gdpfilter.co.id/images/Data%20Sheet%20&%20Drawing%20UF/S-220%20Data%20Sheet.pdf

  • Gonzalez, L. E., Canizares, R. O., & Baena, S. (1997). Efficiency of ammonia and phosphorus removal from a Colombian agro industrial wastewater by the microalgae Chlorella vulgraris and Scnedesmus dimorphus. Bioresource Technology, 60, 259–265.

    Article  CAS  Google Scholar 

  • Green, F. B., Bernstone, L. S., Lundquist, T. J., & Oswald, W. J. (1996). Advanced integrated wastewater pond systems for nitrogen removal. Water Science and Technology, 33, 207–217.

    CAS  Google Scholar 

  • Grima, E. M., Belarbi, E., Fernandez, F. A., Medina, A. R., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances, 20, 491–515.

    Article  Google Scholar 

  • Hammouda, O., Gaber, A., & Abdel-Raouf, N. (1995). Microalgae and wastewater treatment. Ecotoxicology and Environmental Safety, 32, 205–210.

    Article  Google Scholar 

  • Himberg, K., Keijola, A. M., Hiisvirta, L., Pyysalo, H., & Sivonen, K. (1989). The effect of water-treatment processes on the removal of hepatotoxins from Microcystis and Oscillatoria cyanobacteria: A laboratory study. Water Research, 23, 979–984.

    Article  CAS  Google Scholar 

  • Hongyang, S., Yalei, Z., Chunmin, Z., Xuefei, Z., & Jinpeng, L. (2011). Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technology, 102, 9884–9890.

    Article  Google Scholar 

  • Hultberg, M., Carlsson, A. S., & Gustafsson, S. (2013). Treatment of drainage solution from hydroponic greenhouse production with microalgae. Bioresource Technology, 136, 401–406.

    Article  CAS  Google Scholar 

  • Kim, J., Lingaraju, B. P., Rheaume, R., Lee, J. Y., & Siddiqui, K. F. (2010). Removal of ammonia from wastewater effluent by Chlorella vulgaris. Tsinghua Science and Technology, 15(4), 391–396.

    Article  CAS  Google Scholar 

  • Kim, S., Jung, C. W., & Lee, B. (2012). Treatment characteristic of persuant algae-bacteria ratio on actual municipal wastewater condition. Proceedings of the 2012 joint conference: Korea Society of Water and Wastewater (KSWW), Korean Society on Water Quality (KSWQ), May 21–22.

    Google Scholar 

  • Ladner, D. A., Vardona, D. R., & Clark, M. M. (2010). Effects of shear on microfiltration and ultrafiltration fouling by marine bloom-forming algae. Journal of Membrane Science, 356, 33–43.

    Article  CAS  Google Scholar 

  • Lahin, F. A., Sarbatly, R., & Suali, E. (2013). Membrane bioreactor for wastewater treatment using microalgae. Fourth International Graduate Conference on Engineering, Science and Humanities (IGCESH) 16–17 April 2013, Univertisi Teknologi Malaysia, Johor Bahru, Johor, Malaysia.

    Google Scholar 

  • Li, S., Luo, S., & Guo, R. (2013). Efficiency of CO2 fixation by microalgae in a closed raceway pond. Bioresource Technology, 136, 267–272.

    Article  CAS  Google Scholar 

  • Oswald, W. J., & Gotaas, H. B. (1957). Photosynthesis in sewage treatment. Transactions of the American Society of Civil Engineers, 122, 73–105.

    Google Scholar 

  • Ozkan, A. (2012). Development of a novel algae biofilm photobioreactor for biofuel production. A dissertation, The University of Texas at Austin.

    Google Scholar 

  • Rossi, N., Jaouen, P., Legentilhomme, P., & Petit, I. (2004). Harvesting of cynobacterium Arthrospira plantesis using organic filtration membranes. Food and Bioproducts Processing, 82(C3), 244–250.

    Article  Google Scholar 

  • Rossignol, N., Vandanjon, L., Jaouen, P., & Quéméneur, F. (1999). Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultrafiltration. Aquacultural Engineering, 20, 191–208.

    Article  Google Scholar 

  • Ruiz-Martinez, A., Garcia, N. M., Romero, I., Seco, A., & Ferrer, J. (2012). Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology, 126, 247–253.

    Article  CAS  Google Scholar 

  • Singh, G., & Thomas, P. B. (2012). Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor. Bioresource Technology, 117, 80–85.

    Article  CAS  Google Scholar 

  • Song, L. (1998). Flux decline in crossflow microfiltration and ultrafiltration: Mechanisms and modelling of membrane fouling. Journal of Membrane Science, 139, 183–200.

    Article  CAS  Google Scholar 

  • Stankiewicz, A., & Moulijn, J. A. (2002). Process intensification. Industrial and Engineering Chemistry Research, 41, 1920–1924.

    Article  CAS  Google Scholar 

  • Suali, E. (2014). Carbon dioxide utilisation by integrated microalgae cultivation process in membrane photobioreactor. PhD thesis, Universiti Malaysia Sabah.

    Google Scholar 

  • Suali, E., & Sarbatly, R. (2012). Microalgae conversion to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316–4342.

    Article  CAS  Google Scholar 

  • Suali, E., Sarbatly, R., & Shaleh, S. R. M. (2012). Characterisation of local Chlorella sp. toward biofuel production. International conference on applied energy, 5–8 July, Suzhou, China.

    Google Scholar 

  • Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2009). CO2 bio-mitigation using microalgae. Bioresource Technology, 102, 35–42.

    Google Scholar 

  • Wicaksana, F., Anthony, G. F., Pharima, P., & Robert, F. (2012). Microfiltration of algae (Chlorella sorokiniana): Critical flux, fouling and transmission. Journal of Membrane Science, 387–388, 83–92.

    Article  Google Scholar 

  • Yoo, C., Jun, S., Lee, J., Ahn, C., & Oh, H. M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology, 101, 71–74.

    Article  Google Scholar 

  • Yun, Y. S., Lee, S. B., Park, J. M., Lee, C. I., & Yang, J. W. (1997). Carbon dioxide fixation by algal cultivation using wastewater nutrients. Journal of Chemical Technology and Biotechnology, 69, 451–455.

    Article  CAS  Google Scholar 

  • Zhang, X., Qiang, H., Sommerfeld, M., Puruhito, E., & Chen, Y. (2010). Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresource Technology, 101, 5297–5304.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Universiti Malaysia Sabah, Faculty of Engineering and, Minerals and Materials Research Unit for the research facilities. We would like to acknowledge Borneo Marine Research Institute for their provision and supervision on the microalgae related issue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalam Sarbatly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sarbatly, R., Suali, E., Lahin, F.A., Chiam, CK. (2015). Membrane Processes for Microalgae in Carbonation and Wastewater Treatment. In: Ravindra, P. (eds) Advances in Bioprocess Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-17915-5_18

Download citation

Publish with us

Policies and ethics