Skip to main content

Studies on Effect of Process Parameters Variation on Bio-oil Yield in Subcritical and Supercritical Hydrothermal Liquefaction of Malaysian Oil Palm Biomass

  • Chapter
Advances in Bioprocess Technology

Abstract

Experimental studies on liquefaction of three types of Malaysian oil palm biomass, namely empty fruit bunch (EFB), palm mesocarp fiber (PMF) and palm kernel shell (PKS) using water at subcritical and supercritical conditions are conducted in an Inconel batch reactor. The main objective of the present study is to investigate the effect of variation in process parameters such as temperature, pressure and reaction time on the bio-oil yield from the hydrothermal liquefaction of the biomass feedstocks. At the end of the chapter, a general life cycle assessment (LCA) of a liquefaction process is conducted to evaluate the impacts on the environment. In the present study, it is found that the optimum temperature and pressure for maximum bio-oil yield for all the three biomass feedstocks is at supercritical condition of water (390 °C, 25 MPa) and the optimum reaction time is 2 h for EFB and PMF and 4 h for PKS. The LCA indicates that liquefaction process has the highest influence in global warming potential, while other impacts such as acidification, eutrophication, toxicity and photo-oxidant formation are negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah, N., & Gerhauser, H. (2008). Bio-oil derived from empty fruit bunches. Fuel, 87, 2606–2613.

    Article  CAS  Google Scholar 

  • Abdullah, N., Gerhauser, H., & Sulaiman, F. (2010). Fast pyrolysis of empty fruit bunches. Fuel, 89, 2166–2169.

    Article  CAS  Google Scholar 

  • Akhtar, J., & Amin, N. A. S. (2011). A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews, 15, 1615–1624.

    Article  CAS  Google Scholar 

  • Akhtar, J., Kuang, S. K., & Amin, N. A. S. (2010). Liquefaction of empty palm fruit bunch (EPFB) in alkaline hot compressed water. Renewable Energy, 35, 1220–1227.

    Article  CAS  Google Scholar 

  • Anastasakis, K., & Ross, A. B. (2011). Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition. Bioresource Technology, 102, 4876–4883.

    Article  CAS  Google Scholar 

  • Aysu, T., & Kucuk, M. M. (2013). Liquefaction of giant fennel (Ferula orientalis L.) in supercritical organic solvents: Effects of liquefaction parameters on product yields and character. Journal of Supercritical Fluids, 83, 104–123.

    Article  CAS  Google Scholar 

  • Bach, Q.-V., Sillero, M. V., Tran, K.-Q., Skjermo, J. (2014). Fast hydrothermal liquefaction of a Norwegian macro-alga: Screening tests. Algal Research. 10.1016/j.algal.2014.05.009

  • Barreiro, D. L., Prins, W., Ronsse, F., & Brilman, W. (2013). Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects. Biomass and Bioenergy, 53, 113–127.

    Article  Google Scholar 

  • Brunner, G. (2009). Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. Journal of Supercritical Fluids, 47, 373–381.

    Article  CAS  Google Scholar 

  • Butler, E., Devlin, G., Meier, D., & McDonnell, K. (2011). A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renewable and Sustainable Energy Reviews, 15, 4171–4186.

    Article  CAS  Google Scholar 

  • Carnegie Mellon University Green Design Institute. (2014). Economic Input-Output Life Cycle Assessment (EIO-LCA) US 2002 (428 sectors) Purchaser model [Internet]. Retrieved June 22, 2014, from http://www.eiolca.net/

  • Chan, Y. H., Vi, D. K., Yusup, S., Lim, M. T., Zain, A. M., & Uemura, Y. (2014). Studies on catalytic pyrolysis of empty fruit bunch (EFB) using Taguchi’s L9 orthogonal array. Journal of the Energy Institute, 87, 227–234.

    Article  CAS  Google Scholar 

  • Chen, Y., Wu, Y., Zhang, P., Hua, D., Yang, M., Li, C., et al. (2012). Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water. Bioresource Technology, 124, 190–198.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2000a). Effect of lignin content on aqueous liquefaction products of biomass. Energy Conversion & Management, 41, 1601–1607.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2000b). Liquefaction of olive husk by supercritical fluid extraction. Energy Conversion & Management, 41, 1875–1883.

    Article  CAS  Google Scholar 

  • Fortier, M.-O. P., Roberts, G. W., Stagg-Williams, S. M., & Sturm, B. S. M. (2014). Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae. Applied Energy, 122, 73–82.

    Article  CAS  Google Scholar 

  • Guinée, J. B. (Ed.). (2002). Handbook on Life Cycle Assessment: Operational guide to the ISO standards. Dordrecht: Kluwer.

    Google Scholar 

  • Hammond, J., Shackley, S., Sohi, S., & Brownsort, P. (2011). Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK. Energy Policy, 39, 2646–2655.

    Article  CAS  Google Scholar 

  • Hew, K. L., Tamidi, A. M., Yusup, S., Lee, K. T., & Ahmad, M. M. (2010). Catalytic cracking of bio-oil to organic liquid product (OLP). Bioresource Technology, 101, 8855–8858.

    Article  CAS  Google Scholar 

  • Iribarren, D., Peters, J. F., & Dufour, J. (2012). Life cycle assessment of transportation fuels from biomass pyrolysis. Fuel, 97, 812–821.

    Article  CAS  Google Scholar 

  • ISO 14040. (1997). Environmental management – Life cycle assessment – Principles and framework. Geneva: International Organization for Standardisation.

    Google Scholar 

  • Jena, U., & Das, K. C. (2011). Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy and Fuels, 25, 5472–5482.

    Article  CAS  Google Scholar 

  • Jena, U., Das, K. C., & Kastner, J. R. (2011). Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresource Technology, 102, 6221–6229.

    Article  CAS  Google Scholar 

  • Joelsson, J. M., & Gustavsson, L. (2010). Reduction of CO2 emission and oil dependency with biomass-based polygeneration. Biomass and Bioenergy, 34, 967–984.

    Article  CAS  Google Scholar 

  • Kelly-Yong, T. L., Lee, K. T., Mohamed, A. R., & Bhatia, S. (2007). Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy, 35, 5692–5701.

    Article  Google Scholar 

  • Khoo, H. H. (2009). Life cycle impact assessment of various waste conversion technologies. Waste Management, 29, 1892–1900.

    Article  CAS  Google Scholar 

  • Kruse, A., & Dinjus, E. (2007). Hot compressed water as reaction medium and reactant: Properties and synthesis reactions. Journal of Supercritical Fluids, 39, 362–380.

    Article  CAS  Google Scholar 

  • Kruse, A., Funke, A., & Titirici, M. M. (2013). Hydrothermal conversion of biomass to fuels and energetic materials. Current Opinion in Chemical Biology, 17, 515–521.

    Article  CAS  Google Scholar 

  • Kus, N. S. (2012). Organic reactions in subcritical and supercritical water. Tetrahedron, 68, 949–958.

    Article  Google Scholar 

  • Liu, X., Saydah, B., Eranki, P., Colosi, L. M., Mitchell, B. G., James, R., et al. (2013). Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction. Bioresource Technology, 148, 163–171.

    Article  CAS  Google Scholar 

  • Liu, Z., & Zhang, F. S. (2008). Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 49, 3498–3504.

    Article  CAS  Google Scholar 

  • Mazaheri, H., Lee, K. T., Bhatia, S., & Mohamed, A. R. (2010a). Subcritical water liquefaction of oil palm fruit press fiber for the production of bio-oil: Effect of catalysts. Bioresource Technology, 101, 745–751.

    Article  CAS  Google Scholar 

  • Mazaheri, H., Lee, K. T., Bhatia, S., & Mohamed, A. R. (2010b). Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil: Effects of solvents. Bioresource Technology, 101, 7641–7647.

    Article  CAS  Google Scholar 

  • Meryemoğlu, B., Hasanoğlu, A., Irmak, S., & Erbatur, O. (2014). Biofuel production by liquefaction of kenaf (Hibiscus cannabinus L.) biomass. Bioresource Technology, 151, 278–283.

    Article  Google Scholar 

  • Miao, C., Chakraborty, M., & Chen, S. (2012). Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process. Bioresource Technology, 110, 617–627.

    Article  CAS  Google Scholar 

  • Ning, S. K., Hung, M. C., Chang, Y. H., Wan, H. P., Lee, H. T., & Shih, R. F. (2013). Benefit assessment of cost, energy, and environment for biomass pyrolysis oil. Journal of Cleaner Production, 59, 141–149.

    Article  CAS  Google Scholar 

  • Okajima, I., & Sako, T. (2014). Energy conversion of biomass with supercritical and subcritical water using large-scale plants. Journal of Bioscience and Bioengineering, 117, 1–9.

    Article  CAS  Google Scholar 

  • Qian, Y., Zuo, C., Tan, J., & He, J. (2007). Structural analysis of bio-oils from sub- and supercritical water liquefaction of woody biomass. Energy, 32, 196–202.

    Article  CAS  Google Scholar 

  • Radoykova, T., Nenkova, S., & Valchev, I. (2013). Black liquor lignin products, isolation and characterization. Journal of Chemical Technology and Metallurgy, 48, 524–529.

    CAS  Google Scholar 

  • Sahu, S. (2003). Supercritical Fluid Extraction: A Cleaner Technology Option For The Industry. In R. Sanghi & M. M. Srivastava (Eds.), Green chemistry: Environment friendly alternatives (pp. 123–145). New Delhi: Narosa Publishing House.

    Google Scholar 

  • Sangaletti-Gerhard, N., Romanelli, T. L., Vieira, T. M., Ferreirade, S., Navia, R., & Regitano-d’Arce, M. A. B. (2014). Energy flow in the soybean biodiesel production chain using ethanol as solvent extraction of oil from soybeans. Biomass and Bioenergy, 66, 39–48.

    Article  CAS  Google Scholar 

  • Sathre, R. (2014). Comparing the heat of combustion of fossil fuels to the heat accumulated by their lifecycle greenhouse gases. Fuel, 115, 674–677.

    Article  CAS  Google Scholar 

  • Savage, P. E., Levine, R. B., & Huelsman, C. M. (2010). Hydrothermal Processing of Biomass. In M. Crocker (Ed.), Thermochemical conversion of biomass to liquid fuels and chemicals (pp. 192–221). Cambridge: The Royal Society of Chemistry.

    Chapter  Google Scholar 

  • Shekarchian, M., Moghavvemi, M., Mahlia, T. M. I., & Mazandarani, A. (2011). A review on the pattern of electricity generation and emission in Malaysia from 1976 to 2008. Renewable and Sustainable Energy Reviews, 15, 2629–2642.

    Article  Google Scholar 

  • Sulaiman, F., & Abdullah, N. (2011). Optimum conditions for maximizing pyrolysis liquids of oil palm empty fruit bunches. Energy, 36, 2352–2359.

    Article  CAS  Google Scholar 

  • Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36, 2328–2342.

    Article  CAS  Google Scholar 

  • Valdez, P. J., Nelson, M. C., Wang, H. Y., Lin, X. N., & Savage, P. E. (2012). Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions. Biomass and Bioenergy, 46, 317–331.

    Article  CAS  Google Scholar 

  • Wang, F., Chang, Z., Duan, P., Yan, W., Xu, Y., Zhang, L., et al. (2013). Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils. Bioresource Technology, 149, 509–515.

    Article  CAS  Google Scholar 

  • Wen, D., Jiang, H., & Zhang, K. (2009). Supercritical fluids technology for clean biofuel production. Progress in Natural Science, 19, 273–284.

    Article  CAS  Google Scholar 

  • Zhou, H., Long, Y. Q., Meng, A. H., Li, Q. H., & Zhang, Y. G. (2013). The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves. Thermochimica Acta, 566, 36–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Yusup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chan, Y.H. et al. (2015). Studies on Effect of Process Parameters Variation on Bio-oil Yield in Subcritical and Supercritical Hydrothermal Liquefaction of Malaysian Oil Palm Biomass. In: Ravindra, P. (eds) Advances in Bioprocess Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-17915-5_12

Download citation

Publish with us

Policies and ethics