Skip to main content

Evolution of Protein Structure Degradation and Lessons for the Drug Designer

  • Chapter
  • First Online:
Biomolecular Interfaces

Abstract

Proteins with common ancestry (homologs) typically share a common fold. This structural similarity introduces major problems for drug design since a therapeutic imperative in drug treatment is the control of specificity. As shown in this chapter, while the folding topology of the native structure is highly similar across homologs, the wrapping and expression regulation patterns tend to be different, offering an opportunity to funnel the impact of a drug solely on clinically relevant targets. The evolutionary root of the subtle dissimilarities across homologous proteins is dissected in this chapter both across species and within the human species. As anticipated in this chapter, the wrapping variations across homologs have profound consequences for drug design as we aim at engineering target-specific and species-specific therapeutic agents and build insightful animal models for disease and malignancy. In assessing the evolutionary forces that promote differences in the dehydron patterns across orthologous proteins (homologs from different species), we came across the surprising finding that random genetic drift plays a central role in causing dehydron enrichment. This type of structural degradation promotes higher protein interactivity and is more pronounced in species with low population, such as humans, where mildly deleterious mutations resulting from random drift have a higher probability of getting fixed in the population. The fitness consequences of nature’s evolutionary strategy are assessed for humans, and reveal the high exposure of the human species to fitness catastrophes resulting from aberrant protein aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fernández A, Scott R, Berry RS (2004) The nonconserved wrapping of conserved folds reveals a trend towards increasing connectivity in proteomic networks. Proc Natl Acad Sci USA 101:2823–2827

    Article  PubMed Central  PubMed  Google Scholar 

  2. Fernández A, Berry RS (2004) Molecular dimension explored in evolution to promote proteomic complexity. Proc Natl Acad Sci USA 101:13460–13465

    Article  PubMed Central  PubMed  Google Scholar 

  3. Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404

    Article  CAS  PubMed  Google Scholar 

  4. Kondrashov FA, Koonin EV (2004) A common framework for understanding the origin of genetic dominance and evolutionary fates of gene duplications. Trends Genet 20:287–290

    Article  CAS  PubMed  Google Scholar 

  5. Liang H, Rogale-Plazonic K, Chen J, Li WH, Fernández A (2008) Protein under-wrapping causes dosage sensitivity and decreases gene duplicability. PLoS Genet 4:e11

    Article  PubMed Central  PubMed  Google Scholar 

  6. Papp B, Pal C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197

    Article  CAS  PubMed  Google Scholar 

  7. Fernández A, Scheraga H (2003) Insufficiently dehydrated hydrogen bonds as determinants for protein interactions. Proc Natl Acad Sci USA 100:113–118

    Article  PubMed Central  PubMed  Google Scholar 

  8. Bartel D (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Fernández A, Chen J (2009) Human capacitance to dosage imbalance: coping with inefficient selection. Genome Res (in press)

    Google Scholar 

  10. Fernández A (2004) Keeping dry and crossing membranes. Nat Biotech 22:1081–1084

    Article  Google Scholar 

  11. Veitia RA (2002) Exploring the etiology of haploinsufficiency. BioEssays 24:175–184

    Article  CAS  PubMed  Google Scholar 

  12. Veitia RA (2004) Gene dosage balance: deletions, duplications and dominance. Trends Genet 21:33–35

    Article  Google Scholar 

  13. Su AI, Wiltshire T, Batalov S et al (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Birney E, Andrews D, Caccamo M et al (2006) Ensembl 2006. Nucleic Acids Res 34:D556–D561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17:32–43

    Article  CAS  PubMed  Google Scholar 

  16. Friedman RC, Farth KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lewis B, Burge C, Bartel D (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  18. Grimson A, Farth KK, Johnston WK et al (2007) MicroRNA target specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Aloy P, Ceulemans H, Stark A, Russell RB (2003) The relationship between sequence and interaction divergence in proteins. J Mol Biol 332:989–998

    Article  CAS  PubMed  Google Scholar 

  20. Gu Z, Nicolae D, Lu HH, Li W-H (2002) Rapid divergence in expression between duplicate genes inferred from microarray data. Trends Genet 18:609–613

    Article  CAS  PubMed  Google Scholar 

  21. Chen F, Li W-H (2001) Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am J Hum Genet 68:444–456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Gao L, Innan H (2004) Very low gene duplication rate in the yeast genome. Science 306:1367–1370

    Article  CAS  PubMed  Google Scholar 

  23. Fernández A, Lynch M (2011) Nonadaptive origins of interactome complexity. Nature 474:502–505

    Article  PubMed Central  PubMed  Google Scholar 

  24. Ball P (2011) The Achilles’ heel of biological complexity. Nature. doi:10.1038/news.2011.294. Accessed 18 May 2011

  25. Ball P (2011) Why are you so complex? Complicated protein interactions evolved to stave off mutations. Scientific American. http://www.scientificamerican.com/article/complicated-protein-interactions-evolved-to-stave-off-mutations/. Accessed 18 May 2011

  26. Surmacz E, Bartucci M (2005) Role of estrogen receptor alpha in modulating IGF-I receptor signaling and function in breast cancer. J Exp Clin Cancer Res 23:385–394

    Google Scholar 

  27. Kimura M (2005) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  28. Arnold FH, Meyerowitz JT (2014) News and views: evolving with purpose. Nature 509:166–167

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Fernández Stigliano .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández Stigliano, A. (2015). Evolution of Protein Structure Degradation and Lessons for the Drug Designer. In: Biomolecular Interfaces. Springer, Cham. https://doi.org/10.1007/978-3-319-16850-0_6

Download citation

Publish with us

Policies and ethics