Skip to main content

Isolation and Characterization of Stem Cells from Human Central Nervous System Malignancies

  • Chapter
Stem Cell Biology in Neoplasms of the Central Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 853))

Abstract

Central Nervous System (CNS) tumors include some of the most invasive and lethal tumors in humans. The poor prognosis in patients with CNS tumors is ascribed to their invasive nature. After the description of a stem cell-like cohort in hematopoietic cancers, tumor stem cells (TSCs) have been isolated from a variety of solid tumors, including brain tumors. Further research has uncovered the crucial role these cells play in the initiation and propagation of brain tumors. More importantly, TSCs have also been shown to be relatively resistant to conventional cytotoxic therapeutics, which may also account for the alarmingly high rate of CNS tumor recurrence. In order to elucidate prospective therapeutic targets it is imperative to study these cells in detail and to accomplish this, we need to be able to reliably isolate and characterize these cells. This chapter will therefore, provide an overview of the methods used to isolate and characterize stem cells from human CNS malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  2. Rich JN, Eyler CE. Cancer stem cells in brain tumor biology. Cold Spring Harb Symp Quant Biol. 2008;73:411–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CHM, Jones DL, et al. Cancer stem cells: perspectives on current status and future directions—AACR Workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44.

    Article  CAS  PubMed  Google Scholar 

  4. Ehtesham M, Mapara KY, Stevenson CB, Thompson RC. CXCR4 mediates the proliferation of glioblastoma progenitor cells. Cancer Lett. 2009;274(2):305–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008;26(17):2839–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, et al. Stem cell–like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66(16):7843–8.

    Article  CAS  PubMed  Google Scholar 

  7. Rycaj K, Tang DG. Cancer stem cells and radioresistance. Int J Radiat Biol. 2014;90:615–21.

    Article  CAS  PubMed  Google Scholar 

  8. Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine. 2012;7(4):597–615.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Grimes C, Margolin DA, Li L. Are cancer stem cells responsible for cancer recurrence? Cell Biol Res Ther [Internet]. 2012 [cited 2014 Jun 10];01(01). Available from: http://www.scitechnol.com/cancer-stem-cells-responsible-for-cancer-recurrence-C6I7.php?article_id=63.

  10. Yu Y, Ramena G, Elble RC. The role of cancer stem cells in relapse of solid tumors. Front Biosci (Elite Ed). 2012;4:1528–41.

    Article  Google Scholar 

  11. Dobbin ZC, Landen CN. Isolation and characterization of potential cancer stem cells from solid human tumors: potential applications. Curr Protoc Pharmacol. 2013;63:Unit 14.28.

    Google Scholar 

  12. Guerrero-Cázares H, Chaichana KL, Quiñones-Hinojosa A. Neurosphere culture and human organotypic model to evaluate brain tumor stem cells. Methods Mol Biol. 2009;568:73–83.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Mizrak D, Brittan M, Alison MR. CD133: molecule of the moment. J Pathol. 2008;214(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  14. Corbeil D, Fargeas CA, Huttner WB. Rat prominin, like its mouse and human orthologues, is a pentaspan membrane glycoprotein. Biochem Biophys Res Commun. 2001;285(4):939–44.

    Article  CAS  PubMed  Google Scholar 

  15. Weigmann A, Corbeil D, Hellwig A, Huttner WB. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci U S A. 1997;94(23):12425–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12): 5002–12.

    CAS  PubMed  Google Scholar 

  17. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood. 1997;90(12):5013–21.

    CAS  PubMed  Google Scholar 

  18. Horn PA, Tesch H, Staib P, Kube D, Diehl V, Voliotis D. Expression of AC133, a novel hematopoietic precursor antigen, on acute myeloid leukemia cells. Blood. 1999;93(4):1435–7.

    CAS  PubMed  Google Scholar 

  19. Bühring HJ, Seiffert M, Marxer A, Weiss B, Faul C, Kanz L, et al. AC133 antigen expression is not restricted to acute myeloid leukemia blasts but is also found on acute lymphoid leukemia blasts and on a subset of CD34+ B-cell precursors. Blood. 1999;94(2):832–3.

    PubMed  Google Scholar 

  20. Neuzil J, Stantic M, Zobalova R, Chladova J, Wang X, Prochazka L, et al. Tumour-initiating cells vs. cancer “stem” cells and CD133: what’s in the name? Biochem Biophys Res Commun. 2007;355(4):855–9.

    Article  CAS  PubMed  Google Scholar 

  21. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.

    CAS  PubMed  Google Scholar 

  22. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.

    Article  CAS  PubMed  Google Scholar 

  23. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100(25):15178–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Dell’Albani P. Stem cell markers in gliomas. Neurochem Res. 2008;33(12):2407–15.

    Article  PubMed  Google Scholar 

  25. Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell. 1990;60(4):585–95.

    Article  CAS  PubMed  Google Scholar 

  26. Hockfield S, McKay RD. Identification of major cell classes in the developing mammalian nervous system. J Neurosci. 1985;5(12):3310–28.

    CAS  PubMed  Google Scholar 

  27. Strojnik T, Røsland GV, Sakariassen PO, Kavalar R, Lah T. Neural stem cell markers, nestin and musashi proteins, in the progression of human glioma: correlation of nestin with prognosis of patient survival. Surg Neurol. 2007;68(2):133–43. discussion 143–144.

    Article  PubMed  Google Scholar 

  28. Zhang M, Song T, Yang L, Chen R, Wu L, Yang Z, et al. Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients. J Exp Clin Cancer Res. 2008;27:85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Emmenegger BA, Wechsler-Reya RJ. Stem cells and the origin and propagation of brain tumors. J Child Neurol. 2008;23(10):1172–8.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Sotelo C, Alvarado-Mallart RM, Frain M, Vernet M. Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells. J Neurosci. 1994;14(1):124–33.

    CAS  PubMed  Google Scholar 

  31. Alder J, Cho NK, Hatten ME. Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron. 1996;17(3):389–99.

    Article  CAS  PubMed  Google Scholar 

  32. Lee A, Kessler JD, Read T-A, Kaiser C, Corbeil D, Huttner WB, et al. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci. 2005;8(6):723–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E, Bengzon J, et al. CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res. 2007;67(12):5727–36.

    Article  CAS  PubMed  Google Scholar 

  34. Eyler CE, Foo W-C, LaFiura KM, McLendon RE, Hjelmeland AB, Rich JN. Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells. 2008;26(12):3027–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Pavon LF, Marti LC, Sibov TT, Miyaki LAM, Malheiros SMF, Mamani JB, et al. Isolation, cultivation and characterization of CD133+ stem cells from human glioblastoma. Einstein São Paulo Braz. 2012;10(2):197–202.

    Article  Google Scholar 

  36. Shin DH, Xuan S, Kim W-Y, Bae G-U, Kim J-S. CD133 antibody-conjugated immunoliposomes encapsulating gemcitabine for targeting glioblastoma stem cells. J Mater Chem B. 2014;2(24):3771–81.

    Article  CAS  Google Scholar 

  37. Latt SA, Stetten G, Juergens LA, Willard HF, Scher CD. Recent developments in the detection of deoxyribonucleic acid synthesis by 33258 Hoechst fluorescence. J Histochem Cytochem. 1975;23(7):493–505.

    Article  CAS  PubMed  Google Scholar 

  38. Latt SA, Stetten G. Spectral studies on 33258 Hoechst and related bisbenzimidazole dyes useful for fluorescent detection of deoxyribonucleic acid synthesis. J Histochem Cytochem. 1976;24(1):24–33.

    Article  CAS  PubMed  Google Scholar 

  39. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(4):1797–806.

    Article  CAS  PubMed  Google Scholar 

  40. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med. 1997;3(12):1337–45.

    Article  CAS  PubMed  Google Scholar 

  41. Srivastava VK, Nalbantoglu J. Flow cytometric characterization of the DAOY medulloblastoma cell line for the cancer stem-like phenotype. Cytometry A. 2008;73(10):940–8.

    Article  PubMed  Google Scholar 

  42. Shen G, Shen F, Shi Z, Liu W, Hu W, Zheng X, et al. Identification of cancer stem-like cells in the C6 glioma cell line and the limitation of current identification methods. In Vitro Cell Dev Biol Anim. 2008;44(7):280–9.

    Article  CAS  PubMed  Google Scholar 

  43. Feuring-Buske M, Hogge DE. Hoechst 33342 efflux identifies a subpopulation of cytogenetically normal CD34(+)CD38(−) progenitor cells from patients with acute myeloid leukemia. Blood. 2001;97(12):3882–9.

    Article  CAS  PubMed  Google Scholar 

  44. Kai K, D’Costa S, Yoon B-I, Brody AR, Sills RC, Kim Y. Characterization of side population cells in human malignant mesothelioma cell lines. Lung Cancer Amst Neth. 2010;70(2):146–51.

    Article  Google Scholar 

  45. Holyoake T, Jiang X, Eaves C, Eaves A. Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood. 1999;94(6):2056–64.

    CAS  PubMed  Google Scholar 

  46. She J-J, Zhang P-G, Che X-M, Wang X, Wang Z-M. Side population cells from HXO-Rb44 retinoblastoma cell line have cancer-initiating property. Int J Ophthalmol. 2011;4(5):461–5.

    PubMed Central  PubMed  Google Scholar 

  47. Qi W, Zhao C, Zhao L, Liu N, Li X, Yu W, et al. Sorting and identification of side population cells in the human cervical cancer cell line HeLa. Cancer Cell Int. 2014;14(1):3.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Xu Y, Xie Y, Wang X, Chen X, Liu Q, Ying M, et al. Identification of cancer stem cells from hepatocellular carcinoma cell lines and their related microRNAs. Oncol Rep. 2013;30(5):2056–62.

    CAS  PubMed  Google Scholar 

  49. Smith PJ, Furon E, Wiltshire M, Campbell L, Feeney GP, Snyder RD, et al. ABCG2-associated resistance to Hoechst 33342 and topotecan in a murine cell model with constitutive expression of side population characteristics. Cytometry A. 2009;75(11):924–33.

    Article  PubMed  Google Scholar 

  50. Zheng X, Shen G, Yang X, Liu W. Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res. 2007;67(8):3691–7.

    Article  CAS  PubMed  Google Scholar 

  51. Broadley KWR, Hunn MK, Farrand KJ, Price KM, Grasso C, Miller RJ, et al. Side population is not necessary or sufficient for a cancer stem cell phenotype in glioblastoma multiforme. Stem Cells. 2011;29(3):452–61.

    Article  CAS  PubMed  Google Scholar 

  52. Marchitti SA, Brocker C, Stagos D, Vasiliou V. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol. 2008;4(6):697–720.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Ma I, Allan AL. The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev. 2011;7(2):292–306.

    Article  CAS  PubMed  Google Scholar 

  54. Ginestier C, Wicinski J, Cervera N, Monville F, Finetti P, Bertucci F, et al. Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle. 2009;8(20):3297–302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Luo P, Wang A, Payne KJ, Peng H, Wang J, Parrish YK, et al. Intrinsic retinoic acid receptor alpha-cyclin-dependent kinase-activating kinase signaling involves coordination of the restricted proliferation and granulocytic differentiation of human hematopoietic stem cells. Stem Cells. 2007;25(10):2628–37.

    Article  CAS  PubMed  Google Scholar 

  56. Duester G, Mic FA, Molotkov A. Cytosolic retinoid dehydrogenases govern ubiquitous metabolism of retinol to retinaldehyde followed by tissue-specific metabolism to retinoic acid. Chem Biol Interact. 2003;143–144:201–10.

    Article  PubMed  Google Scholar 

  57. Hilton J. Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Res. 1984;44(11):5156–60.

    CAS  PubMed  Google Scholar 

  58. Kastan MB, Schlaffer E, Russo JE, Colvin OM, Civin CI, Hilton J. Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood. 1990;75(10):1947–50.

    CAS  PubMed  Google Scholar 

  59. Jones RJ, Barber JP, Vala MS, Collector MI, Kaufmann SH, Ludeman SM, et al. Assessment of aldehyde dehydrogenase in viable cells. Blood. 1995;85(10):2742–6.

    CAS  PubMed  Google Scholar 

  60. Storms RW, Trujillo AP, Springer JB, Shah L, Colvin OM, Ludeman SM, et al. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci U S A. 1999;96(16):9118–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Vaidyanathan G, Song H, Affleck D, McDougald DL, Storms RW, Zalutsky MR, et al. Targeting aldehyde dehydrogenase: a potential approach for cell labeling. Nucl Med Biol. 2009;36(8):919–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Rasper M, Schäfer A, Piontek G, Teufel J, Brockhoff G, Ringel F, et al. Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity. Neuro Oncol. 2010;12(10):1024–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Mao P, Joshi K, Li J, Kim S-H, Li P, Santana-Santos L, et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci U S A. 2013;110(21):8644–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Zhang W, Yan W, You G, Bao Z, Wang Y, Liu Y, et al. Genome-wide DNA methylation profiling identifies ALDH1A3 promoter methylation as a prognostic predictor in G-CIMP-primary glioblastoma. Cancer Lett. 2013;328(1):120–5.

    Article  CAS  PubMed  Google Scholar 

  65. Liu D-Y, Ren C-P, Yuan X-R, Zhang L-H, Liu J, Liu Q, et al. ALDH1 expression is correlated with pathologic grade and poor clinical outcome in patients with astrocytoma. J Clin Neurosci. 2012;19(12):1700–5.

    Article  CAS  PubMed  Google Scholar 

  66. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell. 2010;140(1):62–73.

    Article  CAS  PubMed  Google Scholar 

  67. Dembinski JL, Krauss S. Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis. 2009;26(7):611–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 2010;141(4):583–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Deleyrolle LP, Harding A, Cato K, Siebzehnrubl FA, Rahman M, Azari H, et al. Evidence for label-retaining tumour-initiating cells in human glioblastoma. Brain J Neurol. 2011;134(Pt 5):1331–43.

    Article  Google Scholar 

  70. Krafft C, Sobottka SB, Geiger KD, Schackert G, Salzer R. Classification of malignant gliomas by infrared spectroscopic imaging and linear discriminant analysis. Anal Bioanal Chem. 2007; 387(5):1669–77.

    Article  CAS  PubMed  Google Scholar 

  71. Krafft C, Thümmler K, Sobottka SB, Schackert G, Salzer R. Classification of malignant gliomas by infrared spectroscopy and linear discriminant analysis. Biopolymers. 2006;82(4):301–5.

    Article  CAS  PubMed  Google Scholar 

  72. Steiner G, Küchler S, Hermann A, Koch E, Salzer R, Schackert G, et al. Rapid and label-free classification of human glioma cells by infrared spectroscopic imaging. Cytometry A. 2008;73A(12):1158–64.

    Article  CAS  PubMed  Google Scholar 

  73. Wehbe K, Pineau R, Eimer S, Vital A, Loiseau H, Déléris G. Differentiation between normal and tumor vasculature of animal and human glioma by FTIR imaging. Analyst. 2010;135(12):3052–9.

    Article  CAS  PubMed  Google Scholar 

  74. Uckermann O, Galli R, Anger M, Herold-Mende C, Koch E, Schackert G, et al. Label-free identification of the glioma stem-like cell fraction using Fourier-transform infrared spectroscopy. Int J Radiat Biol. 2014;90:710–7.

    Article  CAS  PubMed  Google Scholar 

  75. Reynolds BA, Rietze RL. Neural stem cells and neurospheres: re-evaluating the relationship. Nat Methods. 2005;2(5):333–6.

    Article  CAS  PubMed  Google Scholar 

  76. Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer. 2006;6(6):425–36.

    Article  CAS  PubMed  Google Scholar 

  77. Hermann A, Maisel M, Liebau S, Gerlach M, Kleger A, Schwarz J, et al. Mesodermal cell types induce neurogenesis from adult human hippocampal progenitor cells. J Neurochem. 2006;98(2):629–40.

    Article  CAS  PubMed  Google Scholar 

  78. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002;39(3):193–206.

    Article  PubMed  Google Scholar 

  79. Gritti A, Galli R, Vescovi AL. Clonal analyses and cryopreservation of neural stem cell cultures. Methods Mol Biol. 2008;438:173–84.

    Article  CAS  PubMed  Google Scholar 

  80. Pavon LF, Marti LC, Sibov TT, Malheiros SMF, Brandt RA, Cavalheiro S, et al. In vitro analysis of neurospheres derived from glioblastoma primary culture: a novel methodology paradigm. Front Neurol. 2014;4:214.

    PubMed Central  PubMed  Google Scholar 

  81. Gritti A, Frölichsthal-Schoeller P, Galli R, Parati EA, Cova L, Pagano SF, et al. Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J Neurosci. 1999; 19(9):3287–97.

    CAS  PubMed  Google Scholar 

  82. Singec I, Knoth R, Meyer RP, Maciaczyk J, Volk B, Nikkhah G, et al. Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat Methods. 2006;3(10):801–6.

    Article  CAS  PubMed  Google Scholar 

  83. Parker MA, Anderson JK, Corliss DA, Abraria VE, Sidman RL, Park KI, et al. Expression profile of an operationally-defined neural stem cell clone. Exp Neurol. 2005;194(2):320–32.

    Article  CAS  PubMed  Google Scholar 

  84. Suslov ON, Kukekov VG, Ignatova TN, Steindler DA. Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc Natl Acad Sci U S A. 2002;99(22):14506–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Kukekov VG, Laywell ED, Thomas LB, Steindler DA. A nestin-negative precursor cell from the adult mouse brain gives rise to neurons and glia. Glia. 1997;21(4):399–407.

    Article  CAS  PubMed  Google Scholar 

  86. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.

    Article  CAS  PubMed  Google Scholar 

  87. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3(12):895–902.

    Article  CAS  PubMed  Google Scholar 

  88. Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci U S A. 2003;100(7):3547–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Tysnes BB. Tumor-initiating and -propagating cells: cells that we would like to identify and control. Neoplasia. 2010;12(7):506–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64(19):7011–21.

    Article  CAS  PubMed  Google Scholar 

  91. Choi SA, Lee JY, Phi JH, Wang K-C, Park C-K, Park S-H, et al. Identification of brain tumour initiating cells using the stem cell marker aldehyde dehydrogenase. Eur J Cancer. 2014;50(1):137–49.

    Article  CAS  PubMed  Google Scholar 

  92. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science. 2007;317(5836):337.

    Article  CAS  PubMed  Google Scholar 

  93. Dovey MC, Zon LI. Defining cancer stem cells by xenotransplantation in zebrafish. Methods Mol Biol. 2009;568:1–5.

    Article  PubMed  Google Scholar 

  94. Yang X-J, Cui W, Gu A, Xu C, Yu S-C, Li T-T, et al. A novel zebrafish xenotransplantation model for study of glioma stem cell invasion. PLoS One. 2013;8(4):e61801.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell. 2008;2(2):183–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Taylor AM, Zon LI. Zebrafish tumor assays: the state of transplantation. Zebrafish. 2009;6(4):339–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moneeb Ehtesham M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khan, I.S., Ehtesham, M. (2015). Isolation and Characterization of Stem Cells from Human Central Nervous System Malignancies. In: Ehtesham, M. (eds) Stem Cell Biology in Neoplasms of the Central Nervous System. Advances in Experimental Medicine and Biology, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-319-16537-0_3

Download citation

Publish with us

Policies and ethics