Overset DNS with Application to Sound Source Prediction

  • R. A. D. AkkermansEmail author
  • R. Ewert
  • S. M. A. Moghadam
  • J. Dierke
  • N. Buchmann
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 130)


In this contribution, we present an application of a computational aeroacoustics code as a hybrid Zonal DNS tool. The extension of the Non-Linear Perturbation Equations (NLPE) with viscous terms is presented as well as information related to the numerical method. The applicability of the simulation tool is illustrated with two testcases, i.e., a 2D circular cylinder in a uniform flow at moderate Reynolds numbers and a 3D decaying flow initialised with Taylor-Green vortices. Both testcases provide results which match well with data reported in literature. The cylinder testcase verifies that the viscous terms are indeed correctly implemented (at least in 2D) and the Taylor-Green vortex case illustrates that the numerical scheme introduced minimal numerical dissipation.


Direct Numerical Simulation Pressure Fluctuation Strouhal Number Background Flow Half Cylinder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been funded by the German Science Foundation (DFG) within the Collaborative Research Centre CRC880 (Sonderforschungsbereich 880, SFB880).


  1. 1.
    Delfs, J.W., Bauer, M., Ewert, R., Grogger, H.A., Lummer, M., Lauke, T.G.W.: Numerical Simulations of Aerodynamic Noise with DLRs aeroacoustic code PIANO, vol. Handbook Version 5.2, (2008)Google Scholar
  2. 2.
    Ewert, R., Bauer, M., Lummer, M.: A review of state-of-the-art aeroacoustic prediction approaches. In: Dénos, R., Lecomte, E., Kors, E., Schram, C. (eds.) Aircraft Noise, Monograph VKI Lecture Series 2012–02, Aircraft Noise, von Kármán Institute for Fluid Dynamics, Brussels (2012)Google Scholar
  3. 3.
    Moghadam, M.S.A.: Implementation of viscous terms into the computational aeroacoustics code PIANO. MSc.-thesis TU Braunschweig (2012)Google Scholar
  4. 4.
    Bailly, C., Bogey, C., Marsden, O.: Progress in direct noise. Int. J. Aeroacoust. 9 (2010)Google Scholar
  5. 5.
    Terracol, M.: A zonal RANS/LES approach for noise sources prediction. Flow Turbul. Combust. 77 (2006)Google Scholar
  6. 6.
    Fröhlich, J., von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44 (2008)Google Scholar
  7. 7.
    Sesterhenn, J.: A characteristic-type formulation of the equations for high order upwind schemes. Comput. Fluids 30 (2001)Google Scholar
  8. 8.
    Anderson, J.D.: Computational Fluid Dynamics: Basics with Applications. McGraw-Hill, New York (1995)Google Scholar
  9. 9.
    Schwamborn, D., Gerhold, T., Kessler, R.: DLR-TAU code—an overview. In: 1st ONERA/DLR Aerospace Symposium (1999)Google Scholar
  10. 10.
    Tam, C.K., Webb, J.C.: Dispersion-relation-preserving fInite difference schemes for computational aeroacoustics. J. Comp. Phys. 107 (1993)Google Scholar
  11. 11.
    Hu, F.Q., Hussaini, M.Y., Manthey, J.: Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics. J. Comput. Phys. 124 (1996)Google Scholar
  12. 12.
    Fey, U., König, M., Eckelmann, H.: A new Strouhal-Reynolds-number relationship for the circular cylinder in the range \(47 \le \) Re \(\le 2 \times 10^5\). Phys. Fluids 10 (1998)Google Scholar
  13. 13.
    Inoue, O., Hatakeyama, N.: Sound generation by a two-dimensional circular cylinder in a uniform flow. J. Fluid Mech. 471 (2002)Google Scholar
  14. 14.
    Sagaut, P.: Large Eddy Simulation for Incompressible Flows: An Introduction, 3rd edn. Springer, Berlin (2006)Google Scholar
  15. 15.
    Marsden, O., Bogey, C., Bailly, C.: Direct noise computation of the turbulent flow around a zero-incidence airfoil. AIAA J. 46 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • R. A. D. Akkermans
    • 1
    Email author
  • R. Ewert
    • 2
  • S. M. A. Moghadam
    • 2
  • J. Dierke
    • 2
  • N. Buchmann
    • 1
  1. 1.Institute of Fluid MechanicsTU BraunschweigBraunschweigGermany
  2. 2.Department of Technical AcousticsGerman Aerospace Center (DLR)BraunschweigGermany

Personalised recommendations