Skip to main content

Reynolds Stress Closure in Hybrid RANS-LES Methods

  • Conference paper
  • First Online:
Progress in Hybrid RANS-LES Modelling

Abstract

The feasibility of using the elliptic blending Reynolds stress model (EB-RSM) in hybrid RANS-LES methods is investigated in this paper. The advantage of the EB-RSM is that it does not use any geometrical wall distance or wall normal vector information which makes it well suited for application in flows with complex wall geometries. A slight modification to the original EB-RSM is proposed to improve the performance for flows with separation. The model is also extended to a sub-grid scale model for fully resolved LES and several possibilities for use as a hybrid RANS-LES model are presented. The RANS EB-RSM model performed overall well in plane channel flows, the periodic hill flow and the flow over a NACA 4412 airfoil with trailing edge separation. In LES, the EB-RSM model provided very good results in a plane channel flow at low Reynolds number. When used as a zonal hybrid RANS-LES model, the EB-RSM displayed a significant log-layer mismatch although the relevance of the modeled and resolved stresses switched right at the prescribed interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spalart, P.R.: Ann. Rev. Fluid Mech. 41, 181–202 (2009)

    Google Scholar 

  2. Menter, F., Egorov, Y.: 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. AIAA 2005–1095 (2005)

    Google Scholar 

  3. Girimaji, S.: J. Appl. Mech. 73, 413 (2006)

    Article  MATH  Google Scholar 

  4. Fadai-Ghotbi, A., Friess, C., Manceau, R., Borée, J.: Phys. Fluids 22, 055104 (2010)

    Article  Google Scholar 

  5. Heinz, S.: Theor. Comput. Fluid Dyn. 21, 99–118 (2007)

    Article  MATH  Google Scholar 

  6. Gopalan, H., Heinz, S., Stöllinger, M.: J. Comput. Phys. 249, 249–274 (2013)

    Article  MathSciNet  Google Scholar 

  7. Basara, B., Krajnovic, S., Girimaji, S., Pavlovic, Z.: AIAA J. 49, 2627–2637 (2011)

    Article  Google Scholar 

  8. Durbin, P.A.: Fluid Dyn. Res. 41, 012203 (2009)

    Article  Google Scholar 

  9. Durbin, P.A.: J. Fluid Mech. 249, 465–498 (1993)

    Article  Google Scholar 

  10. Manceau, R., Hanajalić, K.: Phys. Fluids 14, 744–753 (2002)

    Article  Google Scholar 

  11. Thielen, L., Hanjalic, K., Jonker, H., Manceau, R.: Int. J. Heat Mass Transf. 48, 1583–1598 (2005)

    Article  MATH  Google Scholar 

  12. Launder, B.E., Reece, G.J., Rodi, W.: J. Fluid Mech. 68, 537–566 (1975)

    Article  MATH  Google Scholar 

  13. Daly, B.J., Harlow, F.H.: Phys. Fluids 13, 2634–2649 (1970)

    Article  Google Scholar 

  14. Chaouat, B.: AIAA J. 44, 2390–2403 (2006)

    Article  Google Scholar 

  15. Deardorff, J.W.: ASME J. Fluids Eng. 95, 429–438 (1973)

    Article  Google Scholar 

  16. Inagaki, M.: Int. J. Heat Fluid Flow 32, 26–40 (2011)

    Article  Google Scholar 

  17. Fröhlich, J., Terzi, D.V.: Progr. Aerosp. Sci. 44, 349–377 (2008)

    Article  Google Scholar 

  18. Breuer, M., Peller, N., Rapp, C., Manhart, M.: Comput. Fluids 38, 433–457 (2009)

    Article  MATH  Google Scholar 

  19. Hoyas, S., Jiménez, J.: Phys. Fluids 18(011702), 1–4 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stoellinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Stoellinger, M., Heinz, S., Saha, P. (2015). Reynolds Stress Closure in Hybrid RANS-LES Methods. In: Girimaji, S., Haase, W., Peng, SH., Schwamborn, D. (eds) Progress in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-319-15141-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15141-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15140-3

  • Online ISBN: 978-3-319-15141-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics