Advertisement

Reynolds Stress Closure in Hybrid RANS-LES Methods

  • Michael StoellingerEmail author
  • Stefan Heinz
  • Pankaj Saha
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 130)

Abstract

The feasibility of using the elliptic blending Reynolds stress model (EB-RSM) in hybrid RANS-LES methods is investigated in this paper. The advantage of the EB-RSM is that it does not use any geometrical wall distance or wall normal vector information which makes it well suited for application in flows with complex wall geometries. A slight modification to the original EB-RSM is proposed to improve the performance for flows with separation. The model is also extended to a sub-grid scale model for fully resolved LES and several possibilities for use as a hybrid RANS-LES model are presented. The RANS EB-RSM model performed overall well in plane channel flows, the periodic hill flow and the flow over a NACA 4412 airfoil with trailing edge separation. In LES, the EB-RSM model provided very good results in a plane channel flow at low Reynolds number. When used as a zonal hybrid RANS-LES model, the EB-RSM displayed a significant log-layer mismatch although the relevance of the modeled and resolved stresses switched right at the prescribed interface.

Keywords

Reynolds Stress Detach Eddy Simulation Zonal Approach Plane Channel Flow Trail Edge Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Spalart, P.R.: Ann. Rev. Fluid Mech. 41, 181–202 (2009)Google Scholar
  2. 2.
    Menter, F., Egorov, Y.: 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. AIAA 2005–1095 (2005)Google Scholar
  3. 3.
    Girimaji, S.: J. Appl. Mech. 73, 413 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Fadai-Ghotbi, A., Friess, C., Manceau, R., Borée, J.: Phys. Fluids 22, 055104 (2010)CrossRefGoogle Scholar
  5. 5.
    Heinz, S.: Theor. Comput. Fluid Dyn. 21, 99–118 (2007)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gopalan, H., Heinz, S., Stöllinger, M.: J. Comput. Phys. 249, 249–274 (2013)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Basara, B., Krajnovic, S., Girimaji, S., Pavlovic, Z.: AIAA J. 49, 2627–2637 (2011)CrossRefGoogle Scholar
  8. 8.
    Durbin, P.A.: Fluid Dyn. Res. 41, 012203 (2009)CrossRefGoogle Scholar
  9. 9.
    Durbin, P.A.: J. Fluid Mech. 249, 465–498 (1993)CrossRefGoogle Scholar
  10. 10.
    Manceau, R., Hanajalić, K.: Phys. Fluids 14, 744–753 (2002)CrossRefGoogle Scholar
  11. 11.
    Thielen, L., Hanjalic, K., Jonker, H., Manceau, R.: Int. J. Heat Mass Transf. 48, 1583–1598 (2005)CrossRefzbMATHGoogle Scholar
  12. 12.
    Launder, B.E., Reece, G.J., Rodi, W.: J. Fluid Mech. 68, 537–566 (1975)CrossRefzbMATHGoogle Scholar
  13. 13.
    Daly, B.J., Harlow, F.H.: Phys. Fluids 13, 2634–2649 (1970)CrossRefGoogle Scholar
  14. 14.
    Chaouat, B.: AIAA J. 44, 2390–2403 (2006)CrossRefGoogle Scholar
  15. 15.
    Deardorff, J.W.: ASME J. Fluids Eng. 95, 429–438 (1973)CrossRefGoogle Scholar
  16. 16.
    Inagaki, M.: Int. J. Heat Fluid Flow 32, 26–40 (2011)CrossRefGoogle Scholar
  17. 17.
    Fröhlich, J., Terzi, D.V.: Progr. Aerosp. Sci. 44, 349–377 (2008)CrossRefGoogle Scholar
  18. 18.
    Breuer, M., Peller, N., Rapp, C., Manhart, M.: Comput. Fluids 38, 433–457 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Hoyas, S., Jiménez, J.: Phys. Fluids 18(011702), 1–4 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michael Stoellinger
    • 1
    Email author
  • Stefan Heinz
    • 1
  • Pankaj Saha
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of WyomingLaramieUSA

Personalised recommendations