Skip to main content

Hybrid LES/RANS of Internal Flows: A Case for More Advanced RANS

  • Conference paper
  • First Online:
Progress in Hybrid RANS-LES Modelling

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 130))

Abstract

The Hybrid LES/RANS is emerging as the most viable modelling option for CFD of real-scale problems, at least in the aerospace design. Entrusting LES to resolve the intrinsic unsteadiness and three-dimensionality in the flow bulk reduces the modelling empiricism to a relatively small wall-adjacent RANS region, arguably justifying the use of very simple models. We argue, however, that for internal flows in complex passages, and involving heat and mass transfer, the role of the near-wall RANS should not be underestimated. The issue is discussed by two examples of flows in turbomachinery: a pinned internal-cooling passage in a turbine blade and tip leakage and wake in a compressor cascade with stagnant and moving casing. The examples illustrate the need for a topology-free wall-integration RANS model that accounts for versatile effects of multiple bounding walls. A HLR using an elliptic relaxation (\(\upsilon ^{2}/k-f\)) RANS model coupled with a dynamic LES showed to perform well in the cases considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A comprehensive overview of various approaches and somewhat unorthodox classification can be found in Fröhlich and Terzi [10].

References

  1. Ames, F.E., Nordquist, C.A., Dvorak, L.A.: Endwall heat transfer measurements in a staggered pin-fin array with an adiabatic pin. In: Proceedings of GT2007 ASME Turbo Expo, Montreal, Canada (2007)

    Google Scholar 

  2. Borello, D., Delibra, G., Hanjalić, K., Rispoli, F.: LES and hybrid LES/RANS study of flow and heat transfer around a wall-bounded short cylinder. In: Peinke, J., Oberlack, M., Talamelli, A. (eds.) Progress in Turbulence III, Springer Proceedings in Physics, vol. 131, pp. 147–150 (2008)

    Google Scholar 

  3. Borello, D., Delibra, G., Hanjalić, K., Rispoli, F.: Large-eddy simulations of tip leakage and secondary flows in an axial compressor cascade using a near-wall turbulence model. Proc. Inst. Mech. Engs, Pt A J. Power Energ. 223(A6 SI), 645–655 (2009)

    Google Scholar 

  4. Borello, D., Delibra, G., Hanjalic, K., Rispoli, F.: Hybrid LES/RANS study of turbulent flow in a linear compressor cascade with moving casing. In: Paper GT2010-23755, Proceedings of ASME Turbo Expo 2010, Glasgow, UK (2010)

    Google Scholar 

  5. Delibra, G., Borello, D., Hanjalić, K., Rispoli, F.: URANS of flow and endwall heat transfer in a pinned passage relevant to gas-turbine blade cooling. Int. J. Heat Fluid Flow 30, 545–560 (2009)

    Article  Google Scholar 

  6. Delibra, G., Hanjalić, K., Borello, D., Rispoli, F.: Vortex structures and heat transfer in a wall-bounded pin matrix: LES with a RANS wall treatment. Int. J. Heat Fluid Flow 31(5), 740–753 (2010)

    Google Scholar 

  7. Delibra, G., Borello, D., Hanjalić, K., Rispoli, F.: An LES insight into convective mechanism of heat transfer in a wall-bounded pin matrix. In: Paper IHTC14-23205, Proceedings of 14th International Heat Transfer Conference, Washington. D.C., USA, 8–13 Aug 2010

    Google Scholar 

  8. Durbin, P.: Near-wall turbulence closure modelling without ‘damping functions’. Theor. Comput. Fluid Dyn. 3, 1–13 (1991)

    MATH  Google Scholar 

  9. Forsythe, J.R., Squires, K.D., Wurtzler, K.E., Spalart, P.R.: DES of fighter aircraft at high alpha. In: AIAA Paper, 2002–0591 (2002)

    Google Scholar 

  10. Fröhlich, J., Von Terzi, D.: Hybrid LES/RANS methods for ten simulation of turbulent flows. Prog. Aerospace Sci. 44, 349–377 (2008)

    Article  Google Scholar 

  11. Hadžiabdić, M.: LES, RANS and combined simulations of impinging flows and heat transfer. Ph.D. Thesis, Delft University of Technology, The Netherlands (2006)

    Google Scholar 

  12. Hanjalić, K., Popovac, M., Hadžiabdić, M.: A robust near-wall elliptic relaxation eddy viscosity turbulence model for CFD. Int. J. Heat Fluid Flow 25(6), 1047–1051 (2004)

    Article  Google Scholar 

  13. Hanjalić, K.: Will RANS survive LES? A view of perspectives. ASME J. Fluids Eng. 127, 831–839 (2005)

    Article  Google Scholar 

  14. Muthanna, C., Devenport, W.J.: Wake of a compressor cascade with tip gap, Pt 1: mean flow and turbulence structure. AIAA J. 11, 2320–2331 (2004)

    Article  Google Scholar 

  15. Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., Mavriplis, D.: CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences, Contract NNL08AA16B, Task NNL12AD05T (2013)

    Google Scholar 

  16. Schmidt, S., Breuer, M.: Hybrid LES-URANS methodology for the prediction of non-equilibrium wall-bounded internal and external flows. Comp. Fluids 96, 226–252 (2014)

    Article  MathSciNet  Google Scholar 

  17. Spalart, P.R.: Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21, 252–263 (2000)

    Article  Google Scholar 

  18. Spalart, P.R., Jou, W.-H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu, C., Liu, Z. (eds.) Advances in DNS/LES. Greyden Press, OH, USA (1997)

    Google Scholar 

  19. Temmerman, L., Leschziner, M., Hadžiabdić, M., Hanjalić, K.: A hybrid two-layer URANS-LES approach for large-eddy simulation at high Reynolds numbers. Int. J. Heat Fluid Flow 26, 173–190 (2005)

    Article  Google Scholar 

  20. Wang, Y., Devenport, W.J.: Wake of a compressor cascade with tip gap. Part2: effects of endwall motion. AIAA J. 11, 2332–2340 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was in part performed in the framework of the Lead Scientists Grant from the Government of Russian Federation (Grant No. 11.G34.31.0046, K. Hanjalić).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hanjalić .

Editor information

Editors and Affiliations

Appendix: The HLR \(\zeta \)-f Model

Appendix: The HLR \(\zeta \)-f Model

$$ \frac{{D}k}{{D}t}=\mathcal{D}_k +P_k -\alpha \varepsilon ;\quad \quad \frac{\hbox {D}\varepsilon }{{D}t}=\mathcal{D}_\varepsilon +\frac{C_{\varepsilon 1} P_k -C_{\varepsilon 2} \varepsilon }{\tau } $$
$$ \frac{{D}\zeta }{{D}t}=\mathcal{D}_\zeta +f-\frac{\zeta }{k}P_k ;\quad \quad L^{2}\nabla ^{2}f-f=\frac{1}{\tau }\left( {C_1 +C_2 \frac{P_k}{\varepsilon }} \right) \left( {\zeta -\frac{2}{3}} \right) $$
$$\begin{aligned} \alpha =&\max \left( {1,\;\frac{L_{RANS}}{\Delta }} \right) ;\quad L_{RANS} =k^{3/2} /\varepsilon ;\\ \quad \Delta =&C_\Delta \left( {\Delta V} \right) ^{1/3}; \quad \mathcal{D}_\phi =\frac{\partial }{\partial x_j}\left[ {\left( {\nu +\frac{\nu _t}{\sigma _\phi }} \right) \frac{\partial \phi }{\partial x_j}} \right] ;\\ \quad \; \nu _t^{RANS} =&c_\mu \tau \zeta k;\quad \quad \nu _t^{LES} =(c_s \Delta )^{2}\overline{S} ;\quad \quad \nu _t =\max (\nu _t^{RANS} , \nu _t^{LES})\quad \\ \tau =&\max \left[ {\min \left( {\frac{k}{\varepsilon },\frac{0.6{}}{\zeta c_\mu \sqrt{6S^{2}}}} \right) ,c_\tau \left( {\frac{\nu }{\varepsilon }} \right) ^{1/2}} \right] ;\\ \quad L=&c_L \max \left[ {\min \left( {\frac{k^{3/2}}{\varepsilon },\frac{k^{1/2}}{\zeta c_\mu \sqrt{6S^{2}}}} \right) ,c_\eta \left( {\frac{\nu ^{3}}{\varepsilon }} \right) ^{1/4}} \right] \end{aligned}$$

\(c_{\mu }\)

C \(_{\varepsilon 1}\)

\(C_{\varepsilon 2}\)

\(C_{1}\)

\(C_{2}\)

\(\sigma _{k}\)

\(\sigma _{\varepsilon }\)

\(\sigma _{\zeta }\)

\(c_{\tau }\)

\(c_{\eta }\)

\(c_{L}\)

\(_{C\Delta }\)

0.22

1.4(1\(+\)0.012/\(\zeta )\)

1.9

0.4

0.65

1.0

1.3

1.2

6

85

0.36

1.5

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hanjalić, K., Borello, D., Delibra, G., Rispoli, F. (2015). Hybrid LES/RANS of Internal Flows: A Case for More Advanced RANS. In: Girimaji, S., Haase, W., Peng, SH., Schwamborn, D. (eds) Progress in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-319-15141-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15141-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15140-3

  • Online ISBN: 978-3-319-15141-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics