Advertisement

Hybrid RANS-LES Methods Applied to Acoustic Problems

  • Abdelkader FrendiEmail author
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 130)

Abstract

In this paper, two acoustic problems of importance to the engineering community are solved using hybrid RANS-LES methods. More specifically, results from the problems of supersonic flow over a surface mounted protuberance and that of a supersonic jet impingement on a flat plat are presented. Through these studies, it is shown that hybrid RANS-LES methods are adequate at resolving the necessary frequency bandwidth relevant to these problems. Good agreement with available experimental results is obtained for both problems.

Keywords

Hybrid RANS-LES Noise radiation Supersonic jet Protuberance Boundary layer 

References

  1. 1.
    Hahn, P.V., Frendi, A.: Interaction of three-dimensional protuberances with a supersonic turbulent boundary layer. AIAA J. 51(7), 1657–1666 (2013)CrossRefGoogle Scholar
  2. 2.
    Frendi, A.: Coupling between a supersonic turbulent boundary layer and a flexible structure. AIAA J. 35(1), 58–66 (1997)CrossRefzbMATHGoogle Scholar
  3. 3.
    Miles, J.W.: On structural fatigue under random loading. J. Aeronaut. Sci. 21(11), 753–762 (1954)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Eisinger, F.L.: Acoustic fatigue of impellers of rotating machinery. J. Pressure Vessel Technol. 124(2), 154–160 (2002)CrossRefGoogle Scholar
  5. 5.
    Henderson, B., Powell, A.: Experiments concerning tones produced by an axisymmetric choked jet impinging on flat plates. J. Sound Vib. 168(2), 307–326 (1993)CrossRefGoogle Scholar
  6. 6.
    Krothapalli, A.: Discrete tones generated by an impinging underexpanded rectangular jet. AIAA J. 23(12), 1910–1915 (1985)CrossRefGoogle Scholar
  7. 7.
    Powel, A.: The sound-producing oscillations of round underexpanded jets impinging on normal plates. J. Acoust. Soc. Am. 83(2), 515–533 (1988)CrossRefGoogle Scholar
  8. 8.
    Lamont, P.J., Hunt, B.L.: The impingement of underexpanded, axisymmetric jets on perpendicular and inclined flat plates. J. Fluid Mech. 100(3), 471–511 (1980)CrossRefGoogle Scholar
  9. 9.
    Tam, C.K.W., Ahuja, K.K.: Theoretical model of discreet tone generation by impinging jets. J. Fluid Mech. 214, 67–87 (1990)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Krothapalli, A., Rajkuperan, E., Alvi, F., Lourenco, L.: Flow field and noise characteristics of a supersonic impinging jet. J. Fluid Mech. 392, 155–181 (1999)CrossRefzbMATHGoogle Scholar
  11. 11.
    Peugeot, J.W., Frendi, A.: Toward the understanding of flow-induced vibrations in a rocket-engine manifold. J. Propul. Power 29(6), 1468–1477 (2013)CrossRefGoogle Scholar
  12. 12.
    Frendi, A., Tosh, A., Girimaji, S.: Flow past a backward facing step: comparison of PANS, DES and URANS results with experiments. Int. J. Comput. Methods Eng. Sci. Mech. 8(1), 23–38 (2006)CrossRefGoogle Scholar
  13. 13.
    Brown, M.R., Frendi, A.: Supersonic jet impingement on a flat plate. In: 18th AIAA/CEAS Aeroacoustics Conference, AIAA-2012-2261, 2012Google Scholar
  14. 14.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)CrossRefGoogle Scholar
  15. 15.
    Nichols, R.H., Nelson, C.C.: Application of hybrid RANS/LES turbulence models. In: AIAA-2003-0083, 2003Google Scholar
  16. 16.
    Luke, E.A., Tong, X., Wu, J., Cinnella, P., Chamberlain, R.: Chem 3.2: A finite-rate viscous chemistry solver-the user guide (2011)Google Scholar
  17. 17.
    Nichols, R.H., Tramel, R.W., Buning, P.G.: Solver and turbulence model upgrades to OVERLOW 2 for unsteady and high-speed applications. In: AIAA-2006-2824 (2006)Google Scholar
  18. 18.
    Robertson, J.E.: Experimental program for the investigation of transonic flow around protuberances in the AEDC-16T wind tunnel facility. Wyle Laboratories Report TM 68–6, Huntsville, AL, 1968Google Scholar
  19. 19.
    Robertson, J.E.: Characteristics of the static and fluctuating pressure environments induced by three-dimensional protuberances at transonic Mach numbers. Wyle Laboratories Report WR 69–3, Huntsville, AL, 1969Google Scholar
  20. 20.
    Robertson, J.E.: Prediction of in-flight fluctuating pressure environments including protuberance induced flow. Wyle Laboratories Report WR 71–10, Huntsville, AL, 1971Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.MAE DepartmentUAHuntsvilleHuntsvilleUSA

Personalised recommendations