Skip to main content

Combining ZDES with Immersed Boundary Conditions Technique for the Treatment of Complex Geometries

  • Conference paper
  • First Online:
Progress in Hybrid RANS-LES Modelling

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 130))

  • 2289 Accesses

Abstract

The present paper focuses on a numerical strategy called ZIBC consisting of the zonal use of Immersed Boundary Conditions combined with the ability of Zonal Detached Eddy Simulation (ZDES) to simulate high Reynolds number separated flows. The motivation of such a strategy lies in the accurate handling of geometrically complex configurations with validated unsteady tools. A first assessement of the strategy has already been performed by evaluating the introduction of a control device in a form of a short cylindrical serrated skirt into a simplified space launcher afterbody. To go further into validation, this paper focuses on the ability of the ZIBC strategy to reproduce the fluctuating pressure field. The test case corresponds to a simplified space launcher afterbody and consists of a cylinder elongated by another cylinder of smaller diameter (i.e. an extension). Immersed Boundary Conditions are used to handle the introduction of the extension into a structured curvilinear grid fitting the ZDES requirements to treat the blunt body configuration. The governing equations are solved using a standard body-fitted finite volume technique over the whole grid. A direct forcing source term is added when cells are internal to the skirt, i.e. solid, to drive the velocity and the turbulence variables to the chosen values. Numerical simulations are performed at a Reynolds number of \(1.2\times 10^{6}\) and a free stream Mach number of \(0.702\). The numerical results demonstrate the ability of the “Zonal Immersed Boundary Conditions” to successfully impose the desired values at solid nodes. The first and second order moments illustrate an excellent agreement between the experiment and the numerical simulation. Finally, the “Zonal Immersed Boundary Conditions” appear to successfully reproduce the effect of the extension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cambier, L., Heib, S., Plot, S.: The Onera elsA CFD software: input from research and feedback from industry. Mech. Ind. 14(3), 159–174 (2013)

    Article  Google Scholar 

  2. Chalot, F., Levasseur, V., Mallet, M., Petit, G., Reau, N.: LES and DES simulations for aircraft design. AIAA Paper 2007–0723, 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (2007)

    Google Scholar 

  3. Deck, S., Thorigny, P.: Unsteadiness of an axisymmetric separating-reattaching flow: numerical investigation. Phys. Fluids. 19(065103) (2007)

    Google Scholar 

  4. Deck, S., Duveau, P., d’Espiney, P., Guillen, P.: Development and application of spalart allmaras one equation turbulence model to three-dimensional supersonic complex configurations. Aerosp. Sci. Technol. 6(3), 171–183 (2002)

    Article  MATH  Google Scholar 

  5. Deck, S.: Zonal-Detached-Eddy simulation of the flow around a high-lift configuration. AIAA J. 43, 2372–2384 (2005)

    Article  Google Scholar 

  6. Deck, S.: Recent improvements in the zonal detached eddy simulation (ZDES) formulation. Theor. Comput. Fluid Dyn. 26(6), 523–550 (2012)

    Article  Google Scholar 

  7. Deprés, D., Reijasse, P., Dussauge, J.-P.: Analysis of unsteadiness in afterbody transonic flows. AIAA J. 42(12), 2541–2550 (2004)

    Article  Google Scholar 

  8. Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary/finite-difference methods for three-dimensional complex flow simulations. J. Comp. Phys. 161(1), 35–60 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Iaccarino, G., Verzicco, R.: Immersed boundary technique for turbulent flow simulations. Appl. Mech. Rev. 56(3), 331–347 (2003)

    Article  Google Scholar 

  10. Liou, M.S.: A sequel to AUSM, AUSM+. J. Comp. Phys. 129(0256), 364–382 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Meliga, P., Reijasse, P.: Unsteady transonic flow behind an axisymmetric afterbody equipped with two boosters. In: 25th AIAA applied aerodynamics conference, Miami, FL, AIAA Paper 2007–4564, 103–115 (2007)

    Google Scholar 

  12. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 229–261 (2005)

    Article  MathSciNet  Google Scholar 

  13. Mochel, L., Weiss, P.-É., Deck, S.: Zonal immersed boundary conditions: application to a high reynolds number afterbody flow. AIAA J. (2014). doi:10.2514/1.J052970

  14. Mohd-Yusof, J.: Combined immersed-boundary/B-spline methods for simulations of flows in complex geometries, pp. 317–328. Annual Research Briefs, Center for Turbulence Research (1997)

    Google Scholar 

  15. O’Rourke, J.: Computational Geometry in C. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  16. Péchier, M., Guillen, P., Caysac, R.: Magnus effect over finned projectiles. J. Spacecr. Rockets 38(4), 542–549 (2001)

    Article  Google Scholar 

  17. Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comp. Phys. 10, 252–271 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  18. Roux, A., Reichstadt, S., Bertier, N., Gicquel, L., Vuillot, F., Poinsot, T.: Comparison of numerical methods and combustion models for LES of a ramjet. Combust. Aerosp. Propul. 337(6–7), 313–572 (2009)

    Google Scholar 

  19. Sainte-Rose, B., Bertier, N., Deck, S., Dupoirieux, F.: Numerical simulations and physical analysis of an overexpanded reactive gas flow in a planar nozzle. Combust. Flame 159, 2856–2871 (2012)

    Article  Google Scholar 

  20. Simon, F., Deck, S., Guillen, P., Sagaut, P., Merlen, A.: Numerical simulation of the compressible mixing layer past an axisymmetric trailing edge. J. Fluid Mech. 591, 215–253 (2007)

    Article  MATH  Google Scholar 

  21. Spalart, P., Jou, W.H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach. In: Proceedings of the 1st AFSOR International Conference on DNS/LES, Ruston, 137–147 (1998)

    Google Scholar 

  22. Verzicco, R., Mohd-Yusof, J., Orlandi, P., Haworth, D.C.: Large Eddy Simulation in complex geometries using boundary body forces. AIAA J. 38, 427–433 (2000)

    Article  Google Scholar 

  23. Verzicco, R., Fatica, M., Iaccarino, G., Moin, P., Khalighi, B.: Large Eddy Simulation of a road-vehicle with drag reduction devices. AIAA J. 40, 2447–2455 (2002)

    Article  Google Scholar 

  24. Vuillot, F., Houssen, F., Manoha, E., Redonnet, S., Jacob, J.: Applications of the CEDRE unstructured flow solver to landing gear unsteady flow and noise predictions. In: AIAA Paper 2011–2944, 17th AIAA/CEAS Aeroacoustics Conference, Portland, Oregon (2011)

    Google Scholar 

  25. Weiss, P.-É., Deck, S., Robinet, J.-C., Sagaut, P.: On the dynamics of axisymmetric turbulent separating/reattaching flows. Phys. Fluids. 21(075103) (2009)

    Google Scholar 

  26. Weiss, P.-É., Deck, S.: Control of the antisymmetric mode (m = 1) for high Reynolds axisymmetric turbulent separating/reattaching flows. Phys. Fluids. 23(095102) (2011)

    Google Scholar 

  27. Yang, J., Balaras, E.: An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J. Comp. Phys. 215, 12–40 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhu, W.J., Behrens, T., Shen, W.Z., Sørensen, J.N.: Hybrid immersed boundary method for airfoils with a trailing-edge flap. AIAA J. 51(1), 30–41 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Centre National d’Études Spatiales (CNES) and the ALLIGATOR research project (ONERA) for financial support. The Ph.D. work of L. Mochel is funded by CNES and ONERA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mochel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mochel, L., Weiss, PÉ., Deck, S. (2015). Combining ZDES with Immersed Boundary Conditions Technique for the Treatment of Complex Geometries. In: Girimaji, S., Haase, W., Peng, SH., Schwamborn, D. (eds) Progress in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-319-15141-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15141-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15140-3

  • Online ISBN: 978-3-319-15141-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics