Skip to main content

A Semi-analytical Approach for Masonry Arch Dynamics

  • Chapter
Masonry Structures: Between Mechanics and Architecture
  • 897 Accesses

Abstract

A semi-analytical approach is proposed for modelling the plane dynamics of a masonry arch, treated as a system of rigid elements with friction and unilateral contacts at each joint. By generalising the method proposed in previous research, the analytical approach is firstly applied to the plane dynamics of a rectangular block simply supported on a moving base. In this case, where the contact although sometimes extended is unique, dynamics is formulated as a frictional contact problem, and conditions for onset of motion according to various mechanisms are fully analytically identified; moreover, criteria for evaluating contact reactions during either smooth or non-smooth dynamics are outlined. The method is then extended to the case of the arch, where each element is characterized at most by a double extended contact; criteria for the onset of motion and evaluation for each element of contact reactions during the dynamic evolution are then identified. The approach proposed constitutes a first step for performing dynamic analysis through either an event-driven or a time-stepping numerical procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ageno, A., & Sinopoli, A. (2005). Lyapunov’s exponents for non-smooth dynamics with impacts: Stability analysis of the rocking block. International Journal of Bifurcation and Chaos, 15(6), 2015–2039.

    Article  MathSciNet  MATH  Google Scholar 

  • Ageno, A., & Sinopoli, A. (2010). Symmetry properties in the symmetry-breaking of non-smooth dynamical systems. Journal of Computational and Nonlinear Dynamics, 5(10), 1–9.

    Google Scholar 

  • Augusti, G., & Sinopoli, A. (1992). Modelling the dynamics of large block structures. Meccanica, 27(3), 195–211.

    Article  MATH  Google Scholar 

  • Baggio, C., & Trovalusci, P. (2000). Collapse behaviour of three-dimensional brick-block systems using non-linear programming. Structural Engineering and Mechanics, 10(2), 181–195.

    Article  Google Scholar 

  • Clemente, P. (1998). Introduction to dynamics of stone arches. Earthquake Engineering and Structural Dynamics, 27(5), 513–522.

    Article  Google Scholar 

  • Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47–65.

    Article  Google Scholar 

  • De Lorenzis, L., DeJong, M., & Ochsendorf, J. (2007). Failure of masonry arches under impulse base motion. Earthquake Engineering and Structural Dynamics, 36(14), 2119–2136.

    Article  Google Scholar 

  • Gilbert, M., & Melbourne, C. (1994). Rigid block analysis of masonry structures. The Structural Engineer, 72(21), 356–361.

    Google Scholar 

  • Glocker, C., & Pfeiffer, F. (1992). Dynamical systems with unilateral contacts. Nonlinear Dynamics, 3(4), 245–259.

    Article  MathSciNet  Google Scholar 

  • Heyman, J. (1969). The safety of masonry arches. International Journal of Mechanical Sciences, 11(4), 363–385.

    Article  MathSciNet  Google Scholar 

  • Hogan, S. J. (1990). The many steady state responses of rigid block under harmonic forcing. Earthquake Engineering and Structural Dynamics, 19(7), 1057–1071.

    Article  Google Scholar 

  • Housner, G. W. (1963). The behavior of inverted pendulum structures during earthquakes. Bulletin of Seismological Society of America, 53, 403–417.

    Google Scholar 

  • Jean, M. (1999). The non-smooth contact dynamics method. Computer Methods in Applied Mechanics and Engineering, 177(3–4), 235–257.

    Article  MathSciNet  MATH  Google Scholar 

  • Livesley, R. K. (1978). Limit analysis of structures formed from rigid blocks. International Journal for Numerical Methods in Engineering, 12(12), 1853–1871.

    Article  MATH  Google Scholar 

  • Lötstedt, P. (1982). Mechanical systems of rigid bodies subject to unilateral constraints. SIAM Journal on Applied Mathematics, 42(2), 281–296.

    Article  MathSciNet  MATH  Google Scholar 

  • Moreau, J. J. (1988). Unilateral contact and dry friction in finite freedom dynamics. In J. J. Moreau & P. D. Panagiotopoulos (Eds.), Non-Smooth Mechanics and Applications, CISM Courses and Lectures (Vol. 302, pp. 1–82). Wien: Springer.

    Google Scholar 

  • Moreau, J. J. (1999). Numerical aspects of the sweeping. Computer Methods in Applied Mechanics and Engineering, 177(3–4), 329–349.

    Article  MathSciNet  MATH  Google Scholar 

  • Moreau, J. J. (2005). An introduction to unilateral dynamics. In M. FrĂ©mond & M. Maceri (Eds.), Novel Approaches in Civil Engineering, Notes in Applied and Computational Mechanics (Vol. 14, pp. 1–46). Berlin: Springer.

    Chapter  Google Scholar 

  • Oppenheim, I. J. (1992). The masonry arch as a four-link mechanism under base motion. Earthquake Engineering and Structural Dynamics, 21(11), 1005–1017.

    Article  Google Scholar 

  • Orduna, A., & Lourenço, P. B. (2005). Three-dimensional limit analysis of rigid blocks assemblages. Part II: Load-path following solution procedure and validation. International Journal of Solid and Structures, 42(18–19), 5161–5180.

    Article  MATH  Google Scholar 

  • Rafiee, A., Vinches, M., & Bohatier, C. (2008). Application of the NSCD method to analyse the dynamic behaviour of stone arched structure. International Journal of Solid and Structures, 45(25–26), 6269–6283.

    Article  MATH  Google Scholar 

  • Sinopoli, A. (1987). Dynamics and impact in a system with unilateral constraints. The relevance of dry friction. Meccanica, 22(3), 210–215.

    Article  MATH  Google Scholar 

  • Sinopoli, A. (1997). Unilaterality and dry friction. A geometric formulation for two-dimensional rigid body dynamics. Nonlinear Dynamics, 12(4), 343–366.

    Article  MathSciNet  MATH  Google Scholar 

  • Sinopoli, A. (2010). A semi-analytical approach for the dynamics of the stone arch. Proceedings of ICE, Engineering and Computational Mechanics, 163EM3, 167–178.

    Google Scholar 

  • Sinopoli, A., Aita, D., & Foce, F. (2007). Further remarks on the collapse of masonry arches with Coulomb friction. In P. Lourenço, D. V. Oliveira, & A. Portela (Eds.), Arch’07 (pp. 649–658). Multicomp: GuimarĂŁes.

    Google Scholar 

  • Sinopoli, A., Corradi, M., & Foce, F. (1997). A modern formulation for pre-elastic theories on masonry arches. Journal of Engineering Mechanics, 123(3), 204–213.

    Article  Google Scholar 

  • Spanos, P. D., & Koh, A.-S. (1984). Rocking of rigid blocks due to harmonic shaking. Journal of Engineering Mechanics, 110(11), 1627–1643.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Sinopoli .

Editor information

Editors and Affiliations

Appendix: List of Symbols

Appendix: List of Symbols

C k , C k,k+1 :

Absolute and relative instantaneous rotation centres in the arch mechanism

g :

Gravity acceleration

G :

Mass centre of the block

G (i) :

Mass centre of i-th voussoir

\( {\boldsymbol{H}}_{\mathrm{P},{\mathrm{n}}_{\mathrm{j}}^{(i)}}^{\left(\mathrm{i}\right)} \) :

Generalised direction associated with unit vector n (i)j at point P (i) of i-th mega-voussoir

\( {\boldsymbol{H}}_{{\mathrm{C}}_{\mathrm{k},\mathrm{k}+1}}^{\left(\mathrm{k}+1\right)} \) :

Generalised direction associated with \( {\boldsymbol{n}}^{\left(\mathrm{k},\mathrm{k}+1\right)} \) at point C k,k+1 of (k+1)-th mega-voussoir

i, j :

Counters of arch voussoirs and joints, respectively

I n, I t :

Normal and tangential impulsive reactions

k :

Counter of mega-voussoirs in the arch mechanism

k s(t):

Acceleration of the ground motion in g units

\( {\boldsymbol{n}}^{\left(\mathrm{k},\mathrm{k}+1\right)} \) :

Unit vector lined with contact and rotation centres of k-th and (k+1)-th mega-voussoirs

N P :

Gradient operator of the position of point P

N P,n, N P,t :

Normal and tangential vectors of the gradient operator N P

áą„ P,n, áą„ P,t :

Normal and tangential vectors of derivative of N P

\( {{\boldsymbol{N}}_{\mathrm{A}}}^{-} \), \( {{\boldsymbol{N}}_{\mathrm{A}}}^{+} \) :

Negative and positive generalised Coulomb’s boundaries for contact at point A

N (i)P :

Gradient operator of the position of point P (i) belonging to i-th voussoir of the arch

N (i)P,n , N (i)P,t :

Normal and tangential vectors of gradient operator N (i)P of i-th voussoir

(O, x, y):

Reference system fixed on boundary Γ

P :

Generic point of the block

Q :

Centre of contact for the block

P (i)j , \( {Q}_{\mathrm{j}}^{\left(\mathrm{i}+1\right)} \) :

Antagonist and candidate contact points at j-th joint of the arch

r P,t :

Tangential position of point P

áą™ P :

Velocity of point P

áą™ P,n, áą™ P,t :

Normal and tangential velocities of point P

\( {\ddot{r}}_{\mathrm{P},\mathrm{n}} \), \( {\ddot{r}}_{\mathrm{P},\mathrm{t}} \) :

Normal and tangential accelerations of point P

\( {\dot{r}}_{\mathrm{Q},\mathrm{n}}^{+} \), \( {\dot{r}}_{\mathrm{Q},\mathrm{t}}^{+} \) :

Post-impact normal and tangential velocities of point Q

áą™ (i)P , áą™ (i)Q :

Velocity of points P (i) and Q (i) belonging to i-th voussoir of the arch

\( {\dot{r}}_{\mathrm{P},{\mathrm{n}}_{\mathrm{j}}^{\left(\mathrm{i}\right)}}^{\left(\mathrm{i}\right)} \), \( {\dot{r}}_{\mathrm{Q},{\mathrm{n}}_{\mathrm{j}}^{\left(\mathrm{i}\right)}}^{\left(\mathrm{i}+1\right)} \) :

Normal velocity of antagonist P (i) and candidate \( {Q}^{\left(\mathrm{i}+1\right)} \) points in the system (t (i)j , n (i)j )

R n, R t :

Normal and tangential reactions at contact point

\( {\boldsymbol{R}}^{\left(\mathrm{i},\mathrm{i}+1\right)} \) :

Reaction transmitted by i-th to (i+1)-th voussoir in (t o, n o)

\( {R}_{\mathrm{n}}^{\left(\mathrm{i},\mathrm{i}+1\right)} \), \( {R}_{\mathrm{t}}^{\left(\mathrm{i},\mathrm{i}+1\right)} \) :

Normal and tangential reactions transmitted by i-th to (i+1)-th voussoir in (t o, n o)

\( {R}_{{\mathrm{n}}_{\mathrm{j}}^{\left(\mathrm{i}\right)}}^{\left(\mathrm{i},\mathrm{i}+1\right)} \), \( {R}_{{\mathrm{t}}_{\mathrm{j}}^{\left(\mathrm{i}\right)}}^{\left(\mathrm{i},\mathrm{i}+1\right)} \) :

Normal and tangential reactions transmitted by i-th to (i+1)-th voussoir in ( t (i)j , n (i)j )

S :

Generalised force active on the block

S π :

Generalised active force in plane π

S (i) :

Generalised force active on the i-th voussoir

t :

Time instant

(t, n), (t o, n o):

Unit vectors associated with system (O, x, y) for the block and arch, respectively

(t (i)j , n (i)j ):

Local unit vectors system associated with i-th voussoir at j-th joint

\( \overline{\dot{\boldsymbol{u}}} \) :

Generalised admissible velocity of the block

\( \dot{\boldsymbol{u}} \), ĂĽ :

Generalised velocity and acceleration of the block

\( \overline{{\dot{\boldsymbol{u}}}^{+}} \) :

Generalised admissible post-impact velocity

\( {\dot{\boldsymbol{u}}}^{-} \), \( {\dot{\boldsymbol{u}}}^{+} \) :

Generalised pre-impact and post-impact velocities

\( {\dot{\boldsymbol{u}}}_{\mathrm{A}} \) :

Mechanism with contact at point A

ĂĽ A :

Generalised acceleration with contact at point A

ĂĽ A,n, ĂĽ A,t :

Normal and tangential generalised accelerations in plane π for contact at point A

\( \overline{{\dot{\boldsymbol{u}}}^{\left(\mathrm{i}\right)}} \) :

Generalised admissible velocity of i-th voussoir

\( {\dot{\boldsymbol{u}}}^{\left(\mathrm{i}\right)} \), ĂĽ (i) :

Generalised velocity and acceleration of i-th voussoir

\( {\ddot{x}}_{\mathrm{O}} \) :

Acceleration of ground motion

\( \varDelta \dot{\boldsymbol{u}} \) :

Generalised velocity variation

Γ :

Boundary of the rigid ground

ÎĽ :

Friction coefficient

Ď€ :

Plane to which N A,n and N A,t belong for áą™ A,t equal to zero

π *:

Plane to which N A,n and N A,t belong for áą™ A,t different from zero

Ď€ (2) :

Plane orthogonal to mechanism \( {\dot{u}}^{(2)} \) of the second mega-voussoir

\( {\boldsymbol{\varPsi}}_{{\mathrm{C}}_{1,2}}^{\left(1,2\right)} \) :

Generalised reaction transmitted by first to second mega-voussoir at C 1,2

\( {\boldsymbol{\varPhi}}_{\mathrm{P},{\mathrm{n}}_{\mathrm{j}}^{\left(\mathrm{i}\right)}}^{\left(\mathrm{i}\right)} \), \( {\boldsymbol{\varPhi}}_{\mathrm{P},{\mathrm{t}}_{\mathrm{j}}^{\left(\mathrm{i}\right)}}^{\left(\mathrm{i}\right)} \) :

Local generalised normal and tangential reactions at point P (i) of i-th voussoir

\( {\boldsymbol{\varPsi}}_{\mathrm{P}}^{\left(\mathrm{i},\mathrm{i}+1\right)} \) :

Generalised reaction transmitted at point P (i) by i-th to (i+1)-th voussoir

Ψ Q,n, Ψ Q,t :

Generalised normal and tangential reactions at point Q

Ψ *Q,t :

Generic generalised reaction belonging to Coulomb’s cone

Ξ Q,n, Ξ Q,t :

Generalised normal and tangential impulses

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sinopoli, A. (2015). A Semi-analytical Approach for Masonry Arch Dynamics. In: Aita, D., Pedemonte, O., Williams, K. (eds) Masonry Structures: Between Mechanics and Architecture. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-13003-3_5

Download citation

Publish with us

Policies and ethics