Skip to main content

Abstract

The RET (REarranged during Transfection) gene encodes the tyrosine kinase membrane receptor (RET) for glial cell line-derived neurotrophic factor (GDNF) family ligands (GFL). The human RET gene is located on the long arm of chromosome 10 (10q11.2). RET protein contains an N-terminal glycosylated extracellular portion, with four cadherin-like and one cysteine-rich domain, a central hydrophobic transmembrane segment, and a cytosolic domain that has the tyrosine kinase (TK) activity. RET activation is achieved through the formation of a ternary complex with GFLs and glycosylphosphatidylinositol (GPI)-anchored co-receptors of the GDNF receptor-α (GFRα) family. Upon binding to GFL-GFRα, RET protein undergoes dimerization and activation. RET loss-of-function mutations are found in developmental disorders such as Hirschsprung’s disease, characterized by the congenital absence of the enteric innervation, and congenital anomalies of the kidney or lower urinary tract. Gain-of-function mutations in RET are the driver events of the hereditary cancer syndromes named multiple endocrine neoplasia (MEN) type 2A and 2B. Gene rearrangements fusing the tyrosine kinase domain of RET with the N-terminal portion of heterologous proteins lead to the formation of chimeric oncoproteins endowed with constitutive catalytic activity in papillary thyroid carcinoma and other human malignancies. Finally, altered RET expression has been linked to several additional human neoplasms, including breast carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aa:

Amino acid

ARTN:

Artemin

BCR:

Breakpoint cluster region

CAKUT:

Congenital anomalies of the kidney or lower urinary tract

CCHS:

Congenital central hypoventilation syndrome

Chip:

Chromatin immunoprecipitation

CLD:

Cadherin-like domain

CMML:

Chronic myelomonocytic leukemia

CNS:

Central nervous system

CRC:

Colorectal cancer

CRD:

Cysteine-rich domain

CREB:

Cyclic-AMP-response element binding protein

DA:

Dopaminergic

DNM2:

Dynamin 2 GTPase

ENS:

Enteric nervous system

ERE:

Estrogen-responsive elements

ET:

Endothelin

FDA:

Food and Drug Administration

FGFR1OP:

Fibroblast Growth Factor Receptor 1 Oncogenic Partner

GDNF:

Glial cell line-derived neurotrophic factor

GFL:

Glial cell line-derived neurotrophic factor family

GFRα:

GDNF receptor-α family

GPI:

Glycosylphosphatidylinositol

HMG:

High-mobility group

HSC:

Hematopoietic stem cell

HSCR:

Hirschsprung’s disease

JNK:

c-Jun N-terminal kinase

kbp:

Kilobase pair

KIF5B:

Kinesin family member 5B

LAR:

Leukocyte antigen related

LTβ:

Lymphotoxin β

LTβR:

LTβ receptor

MAPK:

Mitogen-activated protein kinases

MEN:

Multiple endocrine neoplasia

MEN2A:

Multiple endocrine neoplasia type 2A

MEN2B:

Multiple endocrine neoplasia type 2B

MTC:

Medullary thyroid carcinoma

NGF:

Nerve growth factor

NRTN:

Neurturin

NSCLC:

Non small cell lung cancer

OMIM:

Online Mendelian Inheritance in Men

PD:

Parkinson’s disease

PI3K:

Phosphatidylinositol-3-kinase

PKA:

Protein kinase A

PLCγ:

Phospholipase Cγ

PNI:

Perineural invasion

PP:

Peyer’s patches

PSPN:

Persephin

PTB:

Phosphotyrosine-binding domains

PTC:

Papillary thyroid carcinoma

PTP:

Protein tyrosine phosphatase(s)

RA:

Retinoic acid

RET:

REarranged during Transfection

RTK:

Receptor tyrosine kinase

SAXS:

Solution low-angle X-ray scattering

SCG:

Superior cervical ganglion

SCLC:

Small cell lung adenocarcinoma

SERM:

Selective estrogen receptor modulator

TGF-β:

Transforming growth factor β

TK:

Tyrosine kinase

TRPA1:

Transient receptor potential family of cation channels

TSS:

Transcription start site

UTR:

Untranslated regions

References

  1. Ibáñez CF. Structure and physiology of the RET receptor tyrosine kinase. Cold Spring Harb Perspect Biol. 2013;5(2).

    Google Scholar 

  2. Airaksinen MS, Holm L, Hätinen T. Evolution of the GDNF family ligands and receptors. Brain Behav Evol. 2006;68(3):181–90.

    PubMed  Google Scholar 

  3. Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci. 2002;3(5):383–94.

    CAS  PubMed  Google Scholar 

  4. Baloh RH, Enomoto H, Johnson Jr EM, Milbrandt J. The GDNF family ligands and receptors implications for neural development. Curr Opin Neurobiol. 2000;10(1):103–10.

    CAS  PubMed  Google Scholar 

  5. Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell. 1985;42(2):581–8.

    CAS  PubMed  Google Scholar 

  6. Fusco A, Grieco M, Santoro M, Berlingieri MT, Pilotti S, Pierotti MA, Della Porta G, Vecchio G. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature. 1987;328(6126):170–2.

    CAS  PubMed  Google Scholar 

  7. Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, Pierotti MA, Della Porta G, Fusco A, Vecchio G. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell. 1990;60(4):557–63.

    CAS  PubMed  Google Scholar 

  8. Plaza-Menacho I, Mologni L, McDonald NQ. Mechanisms of RET signaling in cancer: current and future implications for targeted therapy. Cell Signal. 2014;26(8):1743–52.

    CAS  PubMed  Google Scholar 

  9. Mulligan LM. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer. 2014;14(3):173–86.

    CAS  PubMed  Google Scholar 

  10. de Groot JW, Links TP, Plukker JT, Lips CJ, Hofstra RM. RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr Rev. 2006;27(5):535–60.

    PubMed  Google Scholar 

  11. Wells Jr SA, Pacini F, Robinson BG, Santoro M. Multiple endocrine neoplasia type 2 and familial medullary thyroid carcinoma: an update. J Clin Endocrinol Metab. 2013;9(8):3149–64.

    Google Scholar 

  12. Costantini F, Shakya R. GDNF/Ret signaling and the development of the kidney. Bioessays. 2006;28(2):117–27.

    CAS  PubMed  Google Scholar 

  13. Jain S. The many faces of RET dysfunction in kidney. Organogenesis. 2009;5(4):177–90.

    PubMed Central  PubMed  Google Scholar 

  14. Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367(6461):380–3.

    CAS  PubMed  Google Scholar 

  15. Iwamoto T, Taniguchi M, Asai N, Ohkusu K, Nakashima I, Takahashi M. cDNA cloning of mouse ret proto-oncogene and its sequence similarity to the cadherin superfamily. Oncogene. 1993;8(4):1087–91.

    CAS  PubMed  Google Scholar 

  16. Pachnis V, Mankoo B, Costantini F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development. 1993;119(4):1005–17.

    CAS  PubMed  Google Scholar 

  17. Tsuzuki T, Takahashi M, Asai N, Iwashita T, Matsuyama M, Asai J. Spatial and temporal expression of the ret proto-oncogene product in embryonic, infant and adult rat tissues. Oncogene. 1995;10(1):191–8.

    CAS  PubMed  Google Scholar 

  18. Sugaya R, Ishimaru S, Hosoya T, Saigo K, Emori Y. A Drosophila homolog of human proto-oncogene ret transiently expressed in embryonic neuronal precursor cells including neuroblasts and CNS cells. Mech Dev. 1994;45(2):139–45.

    CAS  PubMed  Google Scholar 

  19. Shepherd IT, Beattie CE, Raible DW. Functional analysis of zebrafish GDNF. Dev Biol. 2001;231(2):420–35.

    CAS  PubMed  Google Scholar 

  20. Shepherd IT, Pietsch J, Elworthy S, Kelsh RN, Raible DW. Roles for GFRalpha1 receptors in zebrafish enteric nervous system development. Development. 2004;131(1):241–9.

    CAS  PubMed  Google Scholar 

  21. Moore MW, Klein RD, Fariñas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A. Renal and neuronal abnormalities in mice lacking GDNF. Nature. 1996;382(6586):76–9.

    CAS  PubMed  Google Scholar 

  22. Natarajan D, Marcos-Gutierrez C, Pachnis V, de Graaff E. Requirement of signalling by receptor tyrosine kinase RET for the directed migration of enteric nervous system progenitor cells during mammalian embryogenesis. Development. 2002;129(22):5151–60.

    CAS  PubMed  Google Scholar 

  23. Amiel J, Sproat-Emison E, Garcia-Barcelo M, Lantieri F, Burzynski G, Borrego S, Pelet A, Arnold S, Miao X, Griseri P, Brooks AS, Antinolo G, de Pontual L, Clement-Ziza M, Munnich A, Kashuk C, West K, Wong KK, Lyonnet S, Chakravarti A, Tam PK, Ceccherini I, Hofstra RM, Fernandez R, Hirschsprung Disease Consortium. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008;45(1):1–14.

    CAS  PubMed  Google Scholar 

  24. Enomoto H, Crawford PA, Gorodinsky A, Heuckeroth RO, Johnson Jr EM, Milbrandt J. RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons. Development. 2001;128(20):3963–74.

    CAS  PubMed  Google Scholar 

  25. Burau K, Stenull I, Huber K, Misawa H, Berse B, Unsicker K, Ernsberger U. c-ret regulates cholinergic properties in mouse sympathetic neurons: evidence from mutant mice. Eur J Neurosci. 2004;20(2):353–62.

    CAS  PubMed  Google Scholar 

  26. Ernsberger U. The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons. Cell Tissue Res. 2008;333(3):353–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Elitt CM, McIlwrath SL, Lawson JJ, Malin SA, Molliver DC, Cornuet PK, Koerber HR, Davis BM, Albers KM. Artemin overexpression in skin enhances expression of TRPV1 and TRPA1 in cutaneous sensory neurons and leads to behavioral sensitivity to heat and cold. J Neurosci. 2006;26(33):8578–87.

    CAS  PubMed  Google Scholar 

  28. Marcos C, Pachnis V. The effect of the ret- mutation on the normal development of the central and parasympathetic nervous systems. Int J Dev Biol. 1996; Suppl 1:137S–138S.

    Google Scholar 

  29. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996;382(6586):73–6.

    CAS  PubMed  Google Scholar 

  30. Sánchez MP, Silos-Santiago I, Frisén J, He B, Lira SA, Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature. 1996;382(6586):70–3.

    PubMed  Google Scholar 

  31. Shakya R, Jho EH, Kotka P, Wu Z, Kholodilov N, Burke R, D'Agati V, Costantini F. The role of GDNF in patterning the excretory system. Dev Biol. 2005;283(1):70–84.

    CAS  PubMed  Google Scholar 

  32. Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell. 2005;8(2):229–39.

    CAS  PubMed  Google Scholar 

  33. Meng X, Lindahl M, Hyvönen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG, Westphal H, Saarma M, Sariola H. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 2000;287(5457):1489–93.

    CAS  PubMed  Google Scholar 

  34. Jain S, Naughton CK, Yang M, Strickland A, Vij K, Encinas M, Golden J, Gupta A, Heuckeroth R, Johnson Jr EM, Milbrandt J. Mice expressing a dominant-negative Ret mutation phenocopy human Hirschsprung disease and delineate a direct role of Ret in spermatogenesis. Development. 2004;131(21):5503–13.

    CAS  PubMed  Google Scholar 

  35. Kramer ER, Aron L, Ramakers GM, Seitz S, Zhuang X, Beyer K, Smidt MP, Klein R. Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol. 2007;5(3):e39.

    PubMed Central  PubMed  Google Scholar 

  36. Klein P, Müller-Rischart AK, Motori E, Schönbauer C, Schnorrer F, Winklhofer KF, Klein R. Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants. EMBO J. 2014;33(4):341–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Jomary C, Thomas M, Grist J, Milbrandt J, Neal MJ, Jones SE. Expression patterns of neurturin and its receptor components in developing and degenerative mouse retina. Invest Ophthalmol Vis Sci. 1999;40(3):568–74.

    CAS  PubMed  Google Scholar 

  38. Jomary C, Darrow RM, Wong P, Organisciak DT, Jones SE. Expression of neurturin, glial cell line-derived neurotrophic factor, and their receptor components in light-induced retinal degeneration. Invest Ophthalmol Vis Sci. 2004;45(4):1240–6.

    PubMed  Google Scholar 

  39. Carwile ME, Culbert RB, Sturdivant RL, Kraft TW. Rod outer segment maintenance is enhanced in the presence of bFGF, CNTF and GDNF. Exp Eye Res. 1998;66(6):791–805.

    CAS  PubMed  Google Scholar 

  40. Brantley Jr MA, Jain S, Barr EE, Johnson Jr EM, Milbrandt J. Neurturin-mediated ret activation is required for retinal function. J Neurosci. 2008;28(16):4123–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Golden JP, Hoshi M, Nassar MA, Enomoto H, Wood JN, Milbrandt J, Gereau 4th RW, Johnson Jr EM, Jain S. RET signaling is required for survival and normal function of nonpeptidergic nociceptors. J Neurosci. 2010;30(11):3983–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Veiga-Fernandes H, Coles MC, Foster KE, Patel A, Williams A, Natarajan D, Barlow A, Pachnis V, Kioussis D. Tyrosine kinase receptor RET is a key regulator of Peyer’s patch organogenesis. Nature. 2007;446(7135):547–51.

    CAS  PubMed  Google Scholar 

  43. Fonseca-Pereira D, Arroz-Madeira S, Rodrigues-Campos M, Barbosa IA, Domingues RG, Bento T, Almeida AR, Ribeiro H, Potocnik AJ, Enomoto H, Veiga-Fernandes H. The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function. Nature. 2014;514(7520):98–101.

    CAS  PubMed  Google Scholar 

  44. Diaz-Rodriguez E, Garcia-Rendueles AR, Ibáñez-Costa A, Gutierrez-Pascual E, Garcia-Lavandeira M, Leal A, Japon MA, Soto A, Venegas E, Tinahones FJ, Garcia-Arnes JA, Benito P, Angeles Galvez M, Jimenez-Reina L, Bernabeu I, Dieguez C, Luque RM, Castaño JP, Alvarez CV. Somatotropinomas, but not nonfunctioning pituitary adenomas, maintain a functional apoptotic RET/Pit1/ARF/p53 pathway that is blocked by excess GDNF. Endocrinology. 2014;155(11):4329–40.

    PubMed  Google Scholar 

  45. Cañibano C, Rodriguez NL, Saez C, Tovar S, Garcia-Lavandeira M, Borrello MG, Vidal A, Costantini F, Japon M, Dieguez C, Alvarez CV. The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth. EMBO J. 2007;26(8):2015–28.

    PubMed Central  PubMed  Google Scholar 

  46. Bordeaux MC, Forcet C, Granger L, Corset V, Bidaud C, Billaud M, Bredesen DE, Edery P, Mehlen P. The RET proto-oncogene induces apoptosis: a novel mechanism for Hirschsprung disease. EMBO J. 2000;19(15):4056–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Marks C, Belluscio L, Ibáñez CF. Critical role of GFRα1 in the development and function of the main olfactory system. J Neurosci. 2012;32(48):17306–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Song XJ, Li DQ, Farley W, Luo LH, Heuckeroth RO, Milbrandt J, Pflugfelder SC. Neurturin-deficient mice develop dry eye and keratoconjunctivitis sicca. Invest Ophthalmol Vis Sci. 2003;44(10):4223–9.

    PubMed  Google Scholar 

  49. Tomac AC, Agulnick AD, Haughey N, Chang CF, Zhang Y, Bäckman C, Morales M, Mattson MP, Wang Y, Westphal H, Hoffer BJ. Effects of cerebral ischemia in mice deficient in Persephin. Proc Natl Acad Sci USA. 2002;99(14):9521–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Margraf RL, Crockett DK, Krautscheid PM, Seamons R, Calderon FR, Wittwer CT, Mao R. Multiple endocrine neoplasia type 2 RET protooncogene database: repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations. Hum Mutat. 2009;30(4):548–56.

    CAS  PubMed  Google Scholar 

  51. Romei C, Elisei R, Pinchera A, Ceccherini I, Molinaro E, Mancusi F, Martino E, Romeo G, Pacini F. Somatic mutations of the ret protooncogene in sporadic medullary thyroid carcinoma are not restricted to exon 16 and are associated with tumor recurrence. J Clin Endocrinol Metab. 1996;81(4):1619–22.

    CAS  PubMed  Google Scholar 

  52. Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M, Fusco A, Vecchio G, Matoskova B, Kraus MH, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science. 1995;267(5196):381–3.

    CAS  PubMed  Google Scholar 

  53. Knowles PP, Murray-Rust J, Kjaer S, Scott RP, Hanrahan S, Santoro M, Ibáñez CF, McDonald NQ. Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem. 2006;281(44):33577–87.

    CAS  PubMed  Google Scholar 

  54. Plaza-Menacho I, Barnouin K, Goodman K, Martínez-Torres RJ, Borg A, Murray-Rust J, Mouilleron S, Knowles P, McDonald NQ. Oncogenic RET kinase domain mutations perturb the autophosphorylation trajectory by enhancing substrate presentation in trans. Mol Cell. 2014;53(5):738–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Songyang Z, Carraway 3rd KL, Eck MJ, Harrison SC, Feldman RA, Mohammadi M, Schlessinger J, Hubbard SR, Smith DP, Eng C, et al. Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature. 1995;373(6514):536–9.

    CAS  PubMed  Google Scholar 

  56. Carlomagno F, Vitagliano D, Guida T, Ciardiello F, Tortora G, Vecchio G, Ryan AJ, Fontanini G, Fusco A, Santoro M. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 2002;62(24):7284–90.

    CAS  PubMed  Google Scholar 

  57. Wells Jr SA, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, Baudin E, Elisei R, Jarzab B, Vasselli JR, Read J, Langmuir P, Ryan AJ, Schlumberger MJ. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012;30(2):134–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Elisei R, Schlumberger MJ, Müller SP, Schöffski P, Brose MS, Shah MH, Licitra L, Jarzab B, Medvedev V, Kreissl MC, Niederle B, Cohen EE, Wirth LJ, Ali H, Hessel C, Yaron Y, Ball D, Nelkin B, Sherman SI. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol. 2013;31(29):3639–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):569–80.

    CAS  PubMed  Google Scholar 

  60. Melillo RM, Castellone MD, Guarino V, De Falco V, Cirafici AM, Salvatore G, Caiazzo F, Basolo F, Giannini R, Kruhoffer M, Orntoft T, Fusco A, Santoro M. The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J Clin Invest. 2005;115(4):1068–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Santoro M, Chiappetta G, Cerrato A, Salvatore D, Zhang L, Manzo G, Picone A, Portella G, Santelli G, Vecchio G, Fusco A. Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene. 1996;12(8):1821–6.

    CAS  PubMed  Google Scholar 

  62. Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science. 2000;290(5489):138–41.

    CAS  PubMed  Google Scholar 

  63. Gandhi M, Evdokimova VN, Cuenco K, Nikiforova MN, Kelly LM, Stringer JR, Bakkenist CJ, Nikiforov YE. Homologous chromosomes make contact at the sites of double-strand breaks in genes in somatic G0/G1-phase human cells. Proc Natl Acad Sci USA. 2012;109(24):9454–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Williams D. Radiation carcinogenesis: lessons from Chernobyl. Oncogene. 2008;27 Suppl 2:S9–18.

    CAS  PubMed  Google Scholar 

  65. Rabes HM, Demidchik EP, Sidorow JD, Lengfelder E, Beimfohr C, Hoelzel D, Klugbauer S. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res. 2000;6(3):1093–103.

    CAS  PubMed  Google Scholar 

  66. Ricarte-Filho JC, Li S, Garcia-Rendueles ME, Montero-Conde C, Voza F, Knauf JA, Heguy A, Viale A, Bogdanova T, Thomas GA, Mason CE, Fagin JA. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest. 2013;123(11):4935–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Bongarzone I, Monzini N, Borrello MG, Carcano C, Ferraresi G, Arighi E, Mondellini P, Della Porta G, Pierotti MA. Molecular characterization of a thyroid tumor-specific transforming sequence formed by the fusion of ret tyrosine kinase and the regulatory subunit RI alpha of cyclic AMP-dependent protein kinase A. Mol Cell Biol. 1993;13(1):358–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359(13):1367–80.

    CAS  PubMed  Google Scholar 

  69. Ju YS, Lee WC, Shin JY, Lee S, Bleazard T, Won JK, Kim YT, Kim JI, Kang JH, Seo JS. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res. 2012;22(3):436–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, Curran JA, Balasubramanian S, Bloom T, Brennan KW, Donahue A, Downing SR, Frampton GM, Garcia L, Juhn F, Mitchell KC, White E, White J, Zwirko Z, Peretz T, Nechushtan H, Soussan-Gutman L, Kim J, Sasaki H, Kim HR, Park SI, Ercan D, Sheehan CE, Ross JS, Cronin MT, Jänne PA, Stephens PJ. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012;18(3):382–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, Asaka R, Hamanaka W, Ninomiya H, Uehara H, Lim Choi Y, Satoh Y, Okumura S, Nakagawa K, Mano H, Ishikawa Y. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18(3):378–81.

    CAS  PubMed  Google Scholar 

  72. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, Sakamoto H, Tsuta K, Furuta K, Shimada Y, Iwakawa R, Ogiwara H, Oike T, Enari M, Schetter AJ, Okayama H, Haugen A, Skaug V, Chiku S, Yamanaka I, Arai Y, Watanabe S, Sekine I, Ogawa S, Harris CC, Tsuda H, Yoshida T, Yokota J, Shibata T. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012;18(3):375–7.

    CAS  PubMed  Google Scholar 

  73. Li F, Feng Y, Fang R, Fang Z, Xia J, Han X, Liu XY, Chen H, Liu H, Ji H. Identification of RET gene fusion by exon array analyses in “pan-negative” lung cancer from never smokers. Cell Res. 2012;22(5):928–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Wang R, Hu H, Pan Y, Li Y, Ye T, Li C, Luo X, Wang L, Li H, Zhang Y, Li F, Lu Y, Lu Q, Xu J, Garfield D, Shen L, Ji H, Pao W, Sun Y, Chen H. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol. 2012;30(35):4352–9.

    CAS  PubMed  Google Scholar 

  75. Dabir S, Babakoohi S, Kluge A, Morrow JJ, Kresak A, Yang M, MacPherson D, Wildey G, Dowlati A. RET mutation and expression in small-cell lung cancer. J Thorac Oncol. 2014;9(9):1316–23.

    CAS  PubMed  Google Scholar 

  76. Ballerini P, Struski S, Cresson C, Prade N, Toujani S, Deswarte C, Dobbelstein S, Petit A, Lapillonne H, Gautier EF, Demur C, Lippert E, Pages P, Mansat-De Mas V, Donadieu J, Huguet F, Dastugue N, Broccardo C, Perot C, Delabesse E. RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation. Leukemia. 2012;26(11):2384–9.

    CAS  PubMed  Google Scholar 

  77. Bossi D, Carlomagno F, Pallavicini I, Pruneri G, Trubia M, Raviele PR, Marinelli A, Anaganti S, Cox MC, Viale G, Santoro M, Di Fiore PP, Minucci S. Functional characterization of a novel FGFR1OP-RET rearrangement in hematopoietic malignancies. Mol Oncol. 2014;8(2):221–31.

    CAS  PubMed  Google Scholar 

  78. Wiesner T, He J, Yelensky R, Esteve-Puig R, Botton T, Yeh I, Lipson D, Otto G, Brennan K, Murali R, Garrido M, Miller VA, Ross JS, Berger MF, Sparatta A, Palmedo G, Cerroni L, Busam KJ, Kutzner H, Cronin MT, Stephens PJ, Bastian BC. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat Commun. 2014;5:3116.

    PubMed Central  PubMed  Google Scholar 

  79. Esseghir S, Todd SK, Hunt T, Poulsom R, Plaza-Menacho I, Reis-Filho JS, Isacke CM. A role for glial cell derived neurotrophic factor induced expression by inflammatory cytokines and RET/GFR alpha 1 receptor up-regulation in breast cancer. Cancer Res. 2007;67(24):11732–41.

    CAS  PubMed  Google Scholar 

  80. Boulay A, Breuleux M, Stephan C, Fux C, Brisken C, Fiche M, Wartmann M, Stumm M, Lane HA, Hynes NE. The Ret receptor tyrosine kinase pathway functionally interacts with the ERalpha pathway in breast cancer. Cancer Res. 2008;68(10):3743–51.

    CAS  PubMed  Google Scholar 

  81. Gattelli A, Nalvarte I, Boulay A, Roloff TC, Schreiber M, Carragher N, Macleod KK, Schlederer M, Lienhard S, Kenner L, Torres-Arzayus MI, Hynes NE. Ret inhibition decreases growth and metastatic potential of estrogen receptor positive breast cancer cells. EMBO Mol Med. 2013;5(9):1335–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Stine ZE, McGaughey DM, Bessling SL, Li S, McCallion AS. Steroid hormone modulation of RET through two estrogen responsive enhancers in breast cancer. Hum Mol Genet. 2011;20(19):3746–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Plaza-Menacho I, Morandi A, Robertson D, Pancholi S, Drury S, Dowsett M, Martin LA, Isacke CM. Targeting the receptor tyrosine kinase RET sensitizes breast cancer cells to tamoxifen treatment and reveals a role for RET in endocrine resistance. Oncogene. 2010;29(33):4648–57.

    CAS  PubMed  Google Scholar 

  84. Morandi A, Martin LA, Gao Q, Pancholi S, Mackay A, Robertson D, Zvelebil M, Dowsett M, Plaza-Menacho I, Isacke CM. GDNF-RET signaling in ER-positive breast cancers is a key determinant of response and resistance to aromatase inhibitors. Cancer Res. 2013;73(12):3783–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Wu Q, Ishikawa T, Sirianni R, Tang H, McDonald JG, Yuhanna IS, Thompson B, Girard L, Mineo C, Brekken RA, Umetani M, Euhus DM, Xie Y, Shaul PW. 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Rep. 2013;5(3):637–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Gil Z, Cavel O, Kelly K, Brader P, Rein A, Gao SP, Carlson DL, Shah JP, Fong Y, Wong RJ. Paracrine regulation of pancreatic cancer cell invasion by peripheral nerves. J Natl Cancer Inst. 2010;102(2):107–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. He S, Chen CH, Chernichenko N, He S, Bakst RL, Barajas F, Deborde S, Allen PJ, Vakiani E, Yu Z, Wong RJ. GFRα1 released by nerves enhances cancer cell perineural invasion through GDNF-RET signaling. Proc Natl Acad Sci USA. 2014;111(19):E2008–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Luo Y, Tsuchiya KD, Il Park D, Fausel R, Kanngurn S, Welcsh P, Dzieciatkowski S, Wang J, Grady WM. RET is a potential tumor suppressor gene in colorectal cancer. Oncogene. 2013;32(16):2037–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Draht MX, Smits KM, Tournier B, Jooste V, Chapusot C, Carvalho B, Cleven AH, Derks S, Wouters KA, Belt EJ, Stockmann HB, Bril H, Weijenberg MP, van den Brandt PA, de Bruïne AP, Herman JG, Meijer GA, Piard F, Melotte V, van Engeland M. Promoter CpG island methylation of RET predicts poor prognosis in stage II colorectal cancer patients. Mol Oncol. 2014;8(3):679–88.

    CAS  PubMed  Google Scholar 

  90. Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JK, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PV, Ballinger DG, Sparks AB, Hartigan J, Smith DR, Suh E, Papadopoulos N, Buckhaults P, Markowitz SD, Parmigiani G, Kinzler KW, Velculescu VE, Vogelstein B. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318(5853):1108–13.

    CAS  PubMed  Google Scholar 

  91. Mehlen P, Tauszig-Delamasure S. Dependence receptors and colorectal cancer. Gut. 2014;63(11):1821–9.

    CAS  PubMed  Google Scholar 

  92. Butler Tjaden NE, Trainor PA. The developmental etiology and pathogenesis of Hirschsprung disease. Transl Res. 2013;162(1):1–15.

    CAS  PubMed  Google Scholar 

  93. Goldstein AM, Hofstra RM, Burns AJ. Building a brain in the gut: development of the enteric nervous system. Clin Genet. 2013;83(4):307–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. UniProt Consortium. The universal protein resource (UniProt). Nucleic Acids Res. 2008;36(Database issue):D190–5.

    Google Scholar 

  95. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat. 2003;21(6):577–81.

    CAS  PubMed  Google Scholar 

  96. Carlomagno F, De Vita G, Berlingieri MT, de Franciscis V, Melillo RM, Colantuoni V, Kraus MH, Di Fiore PP, Fusco A, Santoro M. Molecular heterogeneity of RET loss of function in Hirschsprung’s disease. EMBO J. 1996;15(11):2717–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Pasini B, Borrello MG, Greco A, Bongarzone I, Luo Y, Mondellini P, Alberti L, Miranda C, Arighi E, Bocciardi R, et al. Loss of function effect of RET mutations causing Hirschsprung disease. Nat Genet. 1995;10(1):35–40.

    CAS  PubMed  Google Scholar 

  98. Pelet A, Geneste O, Edery P, Pasini A, Chappuis S, Atti T, Munnich A, Lenoir G, Lyonnet S, Billaud M. Various mechanisms cause RET-mediated signaling defects in Hirschsprung’s disease. J Clin Invest. 1998;101(6):1415–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Geneste O, Bidaud C, De Vita G, Hofstra RM, Tartare-Deckert S, Buys CH, Lenoir GM, Santoro M, Billaud M. Two distinct mutations of the RET receptor causing Hirschsprung’s disease impair the binding of signalling effectors to a multifunctional docking site. Hum Mol Genet. 1999;8(11):1989–99.

    CAS  PubMed  Google Scholar 

  100. Ito S, Iwashita T, Asai N, Murakami H, Iwata Y, Sobue G, Takahashi M. Biological properties of Ret with cysteine mutations correlate with multiple endocrine neoplasia type 2A, familial medullary thyroid carcinoma, and Hirschsprung’s disease phenotype. Cancer Res. 1997;57(14):2870–2.

    CAS  PubMed  Google Scholar 

  101. Chappuis-Flament S, Pasini A, De Vita G, Ségouffin-Cariou C, Fusco A, Attié T, Lenoir GM, Santoro M, Billaud M. Dual effect on the RET receptor of MEN 2 mutations affecting specific extracytoplasmic cysteines. Oncogene. 1998;17(22):2851–61.

    CAS  PubMed  Google Scholar 

  102. Fitze G, Appelt H, König IR, Görgens H, Stein U, Walther W, Gossen M, Schreiber M, Ziegler A, Roesner D, Schackert HK. Functional haplotypes of the RET proto-oncogene promoter are associated with Hirschsprung disease (HSCR). Hum Mol Genet. 2003;12(24):3207–14.

    CAS  PubMed  Google Scholar 

  103. Garcia-Barcelo M, Ganster RW, Lui VC, Leon TY, So MT, Lau AM, Fu M, Sham MH, Knight J, Zannini MS, Sham PC, Tam PK. TTF-1 and RET promoter SNPs: regulation of RET transcription in Hirschsprung’s disease. Hum Mol Genet. 2005;14(2):191–204.

    CAS  PubMed  Google Scholar 

  104. Griseri P, Bachetti T, Puppo F, Lantieri F, Ravazzolo R, Devoto M, Ceccherini I. A common haplotype at the 5′ end of the RET proto-oncogene, overrepresented in Hirschsprung patients, is associated with reduced gene expression. Hum Mutat. 2005;25(2):189–95.

    CAS  PubMed  Google Scholar 

  105. Emison ES, McCallion AS, Kashuk CS, Bush RT, Grice E, Lin S, Portnoy ME, Cutler DJ, Green ED, Chakravarti A. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature. 2005;434(7035):857–63.

    CAS  PubMed  Google Scholar 

  106. Skinner MA, Kalyanaraman S, Safford SD, Heuckeroth RO, Tourtellotte W, Goyeau D, Goodfellow P, Milbrandt JD, Freemerman A. A human yeast artificial chromosome containing the multiple endocrine neoplasia type 2B Ret mutation does not induce medullary thyroid carcinoma but does support the growth of kidneys and partially rescues enteric nervous system development in Ret-deficient mice. Am J Pathol. 2005;166(1):265–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Jeanpierre C, Macé G, Parisot M, Morinière V, Pawtowsky A, Benabou M, Martinovic J, Amiel J, Attié-Bitach T, Delezoide AL, Loget P, Blanchet P, Gaillard D, Gonzales M, Carpentier W, Nitschke P, Tores F, Heidet L, Antignac C. Salomon R; Société Française de Foetopathologie. RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects. J Med Genet. 2011;48(7):497–504.

    CAS  PubMed  Google Scholar 

  108. Chatterjee R, Ramos E, Hoffman M, VanWinkle J, Martin DR, Davis TK, Hoshi M, Hmiel SP, Beck A, Hruska K, Coplen D, Liapis H, Mitra R, Druley T, Austin P, Jain S. Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum Genet. 2012;131(11):1725–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Ishizaka Y, Itoh F, Tahira T, Ikeda I, Sugimura T, Tucker J, Fertitta A, Carrano AV, Nagao M. Human ret proto-oncogene mapped to chromosome 10q11.2. Oncogene. 1989;4(12):1519–21.

    CAS  PubMed  Google Scholar 

  110. Pasini B, Hofstra RM, Yin L, Bocciardi R, Santamaria G, Grootscholten PM, Ceccherini I, Patrone G, Priolo M, Buys CH, et al. The physical map of the human RET proto-oncogene. Oncogene. 1995;11(9):1737–43.

    CAS  PubMed  Google Scholar 

  111. Itoh F, Ishizaka Y, Tahira T, Yamamoto M, Miya A, Imai K, Yachi A, Takai S, Sugimura T, Nagao M. Identification and analysis of the ret proto-oncogene promoter region in neuroblastoma cell lines and medullary thyroid carcinomas from MEN2A patients. Oncogene. 1992;7(6):1201–6.

    CAS  PubMed  Google Scholar 

  112. Andrew SD, Delhanty PJ, Mulligan LM, Robinson BG. Sp1 and Sp3 transactivate the RET proto-oncogene promoter. Gene. 2000;256(1–2):283–91.

    CAS  PubMed  Google Scholar 

  113. Puppo F, Musso M, Pirulli D, Griseri P, Bachetti T, Crovella S, Patrone G, Ceccherini I, Ravazzolo R. Comparative genomic sequence analysis coupled to chromatin immunoprecipitation: a screening procedure applied to search for regulatory elements at the RET locus. Physiol Genomics. 2005;23(3):269–74.

    CAS  PubMed  Google Scholar 

  114. Patrone G, Puliti A, Bocciardi R, Ravazzolo R, Romeo G. Sequence and characterisation of the RET proto-oncogene 5′ flanking region: analysis of retinoic acid responsiveness at the transcriptional level. FEBS Lett. 1997;419(1):76–82.

    CAS  PubMed  Google Scholar 

  115. Sukumaran M, Waxman SG, Wood JN, Pachnis V. Flanking regulatory sequences of the locus encoding the murine GDNF receptor, c-ret, directs lac Z (beta-galactosidase) expression in developing somatosensory system. Dev Dyn. 2001;222(3):389–402.

    CAS  PubMed  Google Scholar 

  116. Zordan P, Ravazzolo R, Bocciardi R. A very short segment of the murine Ret promoter contains elements sensitive to in vitro neural cell differentiation. Int J Mol Med. 2005;16(2):325–31.

    CAS  PubMed  Google Scholar 

  117. Zordan P, Tavella S, Brizzolara A, Biticchi R, Ceccherini I, Garofalo S, Ravazzolo R, Bocciardi R. The immediate upstream sequence of the mouse Ret gene controls tissue-specific expression in transgenic mice. Int J Mol Med. 2006;18(6):601–8.

    CAS  PubMed  Google Scholar 

  118. Lorenzo MJ, Eng C, Mulligan LM, Stonehouse TJ, Healey CS, Ponder BA, Smith DP. Multiple mRNA isoforms of the human RET proto-oncogene generated by alternate splicing. Oncogene. 1995;10(7):1377–83.

    CAS  PubMed  Google Scholar 

  119. Myers SM, Eng C, Ponder BA, Mulligan LM. Characterization of RET proto-oncogene 3′ splicing variants and polyadenylation sites: a novel C-terminus for RET. Oncogene. 1995;11(10):2039–45.

    CAS  PubMed  Google Scholar 

  120. Ivanchuk SM, Eng C, Cavenee WK, Mulligan LM. The expression of RET and its multiple splice forms in developing human kidney. Oncogene. 1997;14(15):1811–8.

    CAS  PubMed  Google Scholar 

  121. Ivanchuk SM, Myers SM, Mulligan LM. Expression of RET 3′ splicing variants during human kidney development. Oncogene. 1998;16(8):991–6.

    CAS  PubMed  Google Scholar 

  122. Le Hir H, Charlet-Berguerand N, Gimenez-Roqueplo A, Mannelli M, Plouin P, de Franciscis V, Thermes C. Relative expression of the RET9 and RET51 isoforms in human pheochromocytomas. Oncology. 2000;58(4):311–8.

    PubMed  Google Scholar 

  123. Le Hir H, Charlet-Berguerand N, de Franciscis V, Thermes C. 5′-End RET splicing: absence of variants in normal tissues and intron retention in pheochromocytomas. Oncology. 2002;63(1):84–91.

    PubMed  Google Scholar 

  124. Fluge O, Haugen DR, Akslen LA, Marstad A, Santoro M, Fusco A, Varhaug JE, Lillehaug JR. Expression and alternative splicing of c-ret RNA in papillary thyroid carcinomas. Oncogene. 2001;20(7):885–92.

    CAS  PubMed  Google Scholar 

  125. Carter MT, Yome JL, Marcil MN, Martin CA, Vanhorne JB, Mulligan LM. Conservation of RET proto-oncogene splicing variants and implications for RET isoform function. Cytogenet Cell Genet. 2001;95(3–4):169–76.

    CAS  PubMed  Google Scholar 

  126. Lee KY, Samy ET, Sham MH, Tam PK, Lui VC. 3′ Splicing variants of ret receptor tyrosine kinase are differentially expressed in mouse embryos and in adult mice. Biochim Biophys Acta. 2003;1627(1):26–38.

    CAS  PubMed  Google Scholar 

  127. Arighi E, Alberti L, Torriti F, Ghizzoni S, Rizzetti MG, Pelicci G, Pasini B, Bongarzone I, Piutti C, Pierotti MA, Borrello MG. Identification of Shc docking site on Ret tyrosine kinase. Oncogene. 1997;14(7):773–82.

    CAS  PubMed  Google Scholar 

  128. Lorenzo MJ, Gish GD, Houghton C, Stonehouse TJ, Pawson T, Ponder BA, Smith DP. RET alternate splicing influences the interaction of activated RET with the SH2 and PTB domains of Shc, and the SH2 domain of Grb2. Oncogene. 1997;14(7):763–71.

    CAS  PubMed  Google Scholar 

  129. de Graaff E, Srinivas S, Kilkenny C, D′Agati V, Mankoo BS, Costantini F, Pachnis V. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev. 2001;15(18):2433–44.

    PubMed Central  PubMed  Google Scholar 

  130. Jain S, Encinas M, Johnson Jr EM, Milbrandt J. Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev. 2006;20(3):321–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Lang D, Chen F, Milewski R, Li J, Lu MM, Epstein JA. Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-ret. J Clin Invest. 2000;106(8):963–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Southard-Smith EM, Kos L, Pavan WJ. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet. 1998;18(1):60–4.

    CAS  PubMed  Google Scholar 

  133. Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Préhu MO, Puliti A, Herbarth B, Hermans-Borgmeyer I, Legius E, Matthijs G, Amiel J, Lyonnet S, Ceccherini I, Romeo G, Smith JC, Read AP, Wegner M, Goossens M. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet. 1998;18(2):171–3.

    CAS  PubMed  Google Scholar 

  134. Herbarth B, Pingault V, Bondurand N, Kuhlbrodt K, Hermans-Borgmeyer I, Puliti A, Lemort N, Goossens M, Wegner M. Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci USA. 1998;95(9):5161–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Chi N, Epstein JA. Getting your Pax straight: Pax proteins in development and disease. Trends Genet. 2002;18(1):41–7.

    CAS  PubMed  Google Scholar 

  136. Clarke JC, Patel SR, Raymond Jr RM, Andrew S, Robinson BG, Dressler GR, Brophy PD. Regulation of c-Ret in the developing kidney is responsive to Pax2 gene dosage. Hum Mol Genet. 2006;15(23):3420–8.

    CAS  PubMed  Google Scholar 

  137. Zhu J, Garcia-Barcelo MM, Tam PK, Lui VC. HOXB5 cooperates with NKX2-1 in the transcription of human RET. PLoS One. 2011;6(6):e20815.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Zetterström RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T. Dopamine neuron agenesis in Nurr1-deficient mice. Science. 1997;276(5310):248–50.

    PubMed  Google Scholar 

  139. Castillo SO, Baffi JS, Palkovits M, Goldstein DS, Kopin IJ, Witta J, Magnuson MA, Nikodem VM. Dopamine biosynthesis is selectively abolished in substantia nigra/ventral tegmental area but not in hypothalamic neurons in mice with targeted disruption of the Nurr1 gene. Mol Cell Neurosci. 1998;11(1–2):36–46.

    CAS  PubMed  Google Scholar 

  140. Saucedo-Cardenas O, Quintana-Hau JD, Le WD, Smidt MP, Cox JJ, De Mayo F, Burbach JP, Conneely OM. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci USA. 1998;95(7):4013–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Galleguillos D, Fuentealba JA, Gómez LM, Saver M, Gómez A, Nash K, Burger C, Gysling K, Andrés ME. Nurr1 regulates RET expression in dopamine neurons of adult rat midbrain. J Neurochem. 2010;114(4):1158–67.

    CAS  PubMed  Google Scholar 

  142. Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature. 1999;399(6734):366–70.

    CAS  PubMed  Google Scholar 

  143. Amiel J, Laudier B, Attié-Bitach T, Trang H, de Pontual L, Gener B, Trochet D, Etchevers H, Ray P, Simonneau M, Vekemans M, Munnich A, Gaultier C, Lyonnet S. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet. 2003;33(4):459–61.

    CAS  PubMed  Google Scholar 

  144. Moreau E, Vilar J, Lelièvre-Pégorier M, Merlet-Bénichou C, Gilbert T. Regulation of c-ret expression by retinoic acid in rat metanephros: implication in nephron mass control. Am J Physiol. 1998;275(6Pt 2):F938–45.

    CAS  PubMed  Google Scholar 

  145. Oppenheimer O, Cheung NK, Gerald WL. The RET oncogene is a critical component of transcriptional programs associated with retinoic acid-induced differentiation in neuroblastoma. Mol Cancer Ther. 2007;6(4):1300–9.

    CAS  PubMed  Google Scholar 

  146. Batourina E, Gim S, Bello N, Shy M, Clagett-Dame M, Srinivas S, Costantini F, Mendelsohn C. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat Genet. 2001;27(1):74–8.

    CAS  PubMed  Google Scholar 

  147. Munnes M, Patrone G, Schmitz B, Romeo G, Doerfler W. A 5′-CG-3′-rich region in the promoter of the transcriptionally frequently silenced RET protooncogene lacks methylated cytidine residues. Oncogene. 1998;17(20):2573–83.

    CAS  PubMed  Google Scholar 

  148. Angrisano T, Sacchetti S, Natale F, Cerrato A, Pero R, Keller S, Peluso S, Perillo B, Avvedimento VE, Fusco A, Bruni CB, Lembo F, Santoro M, Chiariotti L. Chromatin and DNA methylation dynamics during retinoic acid-induced RET gene transcriptional activation in neuroblastoma cells. Nucleic Acids Res. 2011;39(6):1993–2006.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Kjaer S, Kurokawa K, Perrinjaquet M, Abrescia C, Ibáñez CF. Self-association of the transmembrane domain of RET underlies oncogenic activation by MEN2A mutations. Oncogene. 2006;25(53):7086–95.

    CAS  PubMed  Google Scholar 

  150. Takahashi M, Buma Y, Taniguchi M. Identification of the ret proto-oncogene products in neuroblastoma and leukemia cells. Oncogene. 1991;6(2):297–301.

    CAS  PubMed  Google Scholar 

  151. Takahashi M, Asai N, Iwashita T, Isomura T, Miyazaki K, Matsuyama M. Characterization of the ret proto-oncogene products expressed in mouse L cells. Oncogene. 1993;8(11):2925–9.

    CAS  PubMed  Google Scholar 

  152. Asai N, Iwashita T, Matsuyama M, Takahashi M. Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol Cell Biol. 1995;15(3):1613–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Mehlen P, Bredesen DE. Dependence receptors: from basic research to drug development. Sci Signal. 2011;4(157):2.

    Google Scholar 

  154. Anders J, Kjar S, Ibáñez CF. Molecular modeling of the extracellular domain of the RET receptor tyrosine kinase reveals multiple cadherin-like domains and a calcium-binding site. J Biol Chem. 2001;276(38):35808–17.

    CAS  PubMed  Google Scholar 

  155. Liu X, Vega QC, Decker RA, Pandey A, Worby CA, Dixon JE. Oncogenic RET receptors display different autophosphorylation sites and substrate binding specificities. J Biol Chem. 1996;271(10):5309–12.

    CAS  PubMed  Google Scholar 

  156. Kawamoto Y, Takeda K, Okuno Y, Yamakawa Y, Ito Y, Taguchi R, Kato M, Suzuki H, Takahashi M, Nakashima I. Identification of RET autophosphorylation sites by mass spectrometry. J Biol Chem. 2004;279(14):14213–24.

    CAS  PubMed  Google Scholar 

  157. Salvatore D, Barone MV, Salvatore G, Melillo RM, Chiappetta G, Mineo A, Fenzi G, Vecchio G, Fusco A, Santoro M. Tyrosines 1015 and 1062 are in vivo autophosphorylation sites in ret and ret-derived oncoproteins. J Clin Endocrinol Metab. 2000;85(10):3898–907.

    CAS  PubMed  Google Scholar 

  158. Salvatore D, Melillo RM, Monaco C, Visconti R, Fenzi G, Vecchio G, Fusco A, Santoro M. Increased in vivo phosphorylation of ret tyrosine 1062 is a potential pathogenetic mechanism of multiple endocrine neoplasia type 2B. Cancer Res. 2001;61(4):1426–31.

    CAS  PubMed  Google Scholar 

  159. Pandey A, Liu X, Dixon JE, Di Fiore PP, Dixit VM. Direct association between the Ret receptor tyrosine kinase and the Src homology 2-containing adapter protein Grb7. J Biol Chem. 1996;271(18):10607–10.

    CAS  PubMed  Google Scholar 

  160. Encinas M, Crowder RJ, Milbrandt J, Johnson Jr EM. Tyrosine 981, a novel ret autophosphorylation site, binds c-Src to mediate neuronal survival. J Biol Chem. 2004;279(18):18262–9.

    CAS  PubMed  Google Scholar 

  161. Donatello S, Fiorino A, Degl'Innocenti D, Alberti L, Miranda C, Gorla L, Bongarzone I, Rizzetti MG, Pierotti MA, Borrello MG. SH2B1beta adaptor is a key enhancer of RET tyrosine kinase signaling. Oncogene. 2007;26(45):6546–59.

    CAS  PubMed  Google Scholar 

  162. Borrello MG, Alberti L, Arighi E, Bongarzone I, Battistini C, Bardelli A, Pasini B, Piutti C, Rizzetti MG, Mondellini P, Radice MT, Pierotti MA. The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase Cgamma. Mol Cell Biol. 1996;16(5):2151–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Iwashita T, Asai N, Murakami H, Matsuyama M, Takahashi M. Identification of tyrosine residues that are essential for transforming activity of the ret proto-oncogene with MEN2A or MEN2B mutation. Oncogene. 1996;12(3):481–7.

    CAS  PubMed  Google Scholar 

  164. Asai N, Murakami H, Iwashita T, Takahashi M. A mutation at tyrosine 1062 in MEN2A-Ret and MEN2B-Ret impairs their transforming activity and association with shc adaptor proteins. J Biol Chem. 1996;271(30):17644–9.

    CAS  PubMed  Google Scholar 

  165. Coulpier M, Anders J, Ibáñez CF. Coordinated activation of autophosphorylation sites in the RET receptor tyrosine kinase: importance of tyrosine 1062 for GDNF mediated neuronal differentiation and survival. J Biol Chem. 2002;277(3):1991–9.

    CAS  PubMed  Google Scholar 

  166. Buckwalter TL, Venkateswaran A, Lavender M, La Perle KM, Cho JY, Robinson ML, Jhiang SM. The roles of phosphotyrosines-294, −404, and −451 in RET/PTC1-induced thyroid tumor formation. Oncogene. 2002;21(53):8166–72.

    CAS  PubMed  Google Scholar 

  167. Ichihara M, Murakumo Y, Takahashi M. RET and neuroendocrine tumors. Cancer Lett. 2004;204(2):197–211.

    CAS  PubMed  Google Scholar 

  168. Schuringa JJ, Wojtachnio K, Hagens W, Vellenga E, Buys CH, Hofstra R, Kruijer W. MEN2A-RET-induced cellular transformation by activation of STAT3. Oncogene. 2001;20(38):5350–8.

    CAS  PubMed  Google Scholar 

  169. Plaza Menacho I, Koster R, van der Sloot AM, Quax WJ, Osinga J, van der Sluis T, Hollema H, Burzynski GM, Gimm O, Buys CH, Eggen BJ, Hofstra RM. RET-familial medullary thyroid carcinoma mutants Y791F and S891A activate a Src/JAK/STAT3 pathway, independent of glial cell line-derived neurotrophic factor. Cancer Res. 2005;65(5):1729–37.

    PubMed  Google Scholar 

  170. Perrinjaquet M, Vilar M, Ibáñez CF. Protein-tyrosine phosphatase SHP2 contributes to GDNF neurotrophic activity through direct binding to phospho-Tyr687 in the RET receptor tyrosine kinase. J Biol Chem. 2010;285(41):31867–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Fukuda T, Kiuchi K, Takahashi M. Novel mechanism of regulation of Rac activity and lamellipodia formation by RET tyrosine kinase. J Biol Chem. 2002;277(21):19114–21.

    CAS  PubMed  Google Scholar 

  172. Schuetz G, Rosário M, Grimm J, Boeckers TM, Gundelfinger ED, Birchmeier W. The neuronal scaffold protein Shank3 mediates signaling and biological function of the receptor tyrosine kinase Ret in epithelial cells. J Cell Biol. 2004;167(5):945–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Kales SC, Nau MM, Merchant AS, Lipkowitz S. Enigma prevents Cbl-c-mediated ubiquitination and degradation of RETMEN2A. PLoS One. 2014;9(1):e87116.

    PubMed Central  PubMed  Google Scholar 

  174. Borrello MG, Mercalli E, Perego C, Degl’Innocenti D, Ghizzoni S, Arighi E, Eroini B, Rizzetti MG, Pierotti MA. Differential interaction of Enigma protein with the two RET isoforms. Biochem Biophys Res Commun. 2002;296(3):515–22.

    CAS  PubMed  Google Scholar 

  175. Wong A, Bogni S, Kotka P, de Graaff E, D'Agati V, Costantini F, Pachnis V. Phosphotyrosine 1062 is critical for the in vivo activity of the Ret9 receptor tyrosine kinase isoform. Mol Cell Biol. 2005;25(21):9661–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Jijiwa M, Fukuda T, Kawai K, Nakamura A, Kurokawa K, Murakumo Y, Ichihara M, Takahashi M. A targeting mutation of tyrosine 1062 in Ret causes a marked decrease of enteric neurons and renal hypoplasia. Mol Cell Biol. 2004;24(18):8026–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Jijiwa M, Kawai K, Fukihara J, Nakamura A, Hasegawa M, Suzuki C, Sato T, Enomoto A, Asai N, Murakumo Y, Takahashi M. GDNF-mediated signaling via RET tyrosine 1062 is essential for maintenance of spermatogonial stem cells. Genes Cells. 2008;13(4):365–74.

    CAS  PubMed  Google Scholar 

  178. Ohgami N, Ida-Eto M, Shimotake T, Sakashita N, Sone M, Nakashima T, Tabuchi K, Hoshino T, Shimada A, Tsuzuki T, Yamamoto M, Sobue G, Jijiwa M, Asai N, Hara A, Takahashi M, Kato M. c-Ret-mediated hearing loss in mice with Hirschsprung disease. Proc Natl Acad Sci USA. 2010;107(29):13051–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993;260(5111):1130–2.

    CAS  PubMed  Google Scholar 

  180. Trupp M, Arenas E, Fainzilber M, Nilsson AS, Sieber BA, Grigoriou M, Kilkenny C, Salazar-Grueso E, Pachnis V, Arumäe U. Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature. 1996;381(6585):785–9.

    CAS  PubMed  Google Scholar 

  181. Jing S, Wen D, Yu Y, Holst PL, Luo Y, Fang M, Tamir R, Antonio L, Hu Z, Cupples R, Louis JC, Hu S, Altrock BW, Fox GM. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell. 1996;8(7):1113–24.

    Google Scholar 

  182. Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F, Phillips HS, Goddard A, Moore MW, Buj-Bello A, Davies AM, Asai N, Takahashi M, Vandlen R, Henderson CE, Rosenthal A. Characterization of a multicomponent receptor for GDNF. Nature. 1996;382(6586):80–3.

    CAS  PubMed  Google Scholar 

  183. Baloh RH, Tansey MG, Golden JP, Creedon DJ, Heuckeroth RO, Keck CL, Zimonjic DB, Popescu NC, Johnson Jr EM, Milbrandt J. TrnR2, a novel receptor that mediates neurturin and GDNF signaling through Ret. Neuron. 1997;18(5):793–802.

    CAS  PubMed  Google Scholar 

  184. Jing S, Yu Y, Fang M, Hu Z, Holst PL, Boone T, Delaney J, Schultz H, Zhou R, Fox GM. GFRalpha-2 and GFRalpha-3 are two new receptors for ligands of the GDNF family. J Biol Chem. 1997;272(52):33111–7.

    CAS  PubMed  Google Scholar 

  185. Klein RD, Sherman D, Ho WH, Stone D, Bennett GL, Moffat B, Vandlen R, Simmons L, Gu Q, Hongo JA, Devaux B, Poulsen K, Armanini M, Nozaki C, Asai N, Goddard A, Phillips H, Henderson CE, Takahashi M, Rosenthal A. A GPI-linked protein that interacts with Ret to form a candidate neurturin receptor. Nature. 1997;387(6634):717–21.

    CAS  PubMed  Google Scholar 

  186. Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS, Leitner ML, Araki T, Johnson Jr EM, Milbrandt J. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron. 1998;21(6):1291–302.

    CAS  PubMed  Google Scholar 

  187. Enokido Y, de Sauvage F, Hongo JA, Ninkina N, Rosenthal A, Buchman VL, Davies AM. GFR alpha-4 and the tyrosine kinase Ret form a functional receptor complex for persephin. Curr Biol. 1998;8(18):1019–22.

    CAS  PubMed  Google Scholar 

  188. Lindahl M, Poteryaev D, Yu L, Arumae U, Timmusk T, Bongarzone I, Aiello A, Pierotti MA, Airaksinen MS, Saarma M. Human glial cell line-derived neurotrophic factor receptor alpha 4 is the receptor for persephin and is predominantly expressed in normal and malignant thyroid medullary cells. J Biol Chem. 2001;276(12):9344–51.

    CAS  PubMed  Google Scholar 

  189. Goodman KM, Kjær S, Beuron F, Knowles PP, Nawrotek A, Burns EM, Purkiss AG, George R, Santoro M, Morris EP, McDonald NQ. RET recognition of GDNF-GFRα1 ligand by a composite binding site promotes membrane-proximal self-association. Cell Rep. 2014;8(6):1894–904.

    CAS  PubMed  Google Scholar 

  190. Poteryaev D, Titievsky A, Sun YF, Thomas-Crusells J, Lindahl M, Billaud M, Arumäe U, Saarma M. GDNF triggers a novel ret-independent Src kinase family-coupled signaling via a GPI-linked GDNF receptor alpha1. FEBS Lett. 1999;463(1–2):63–6.

    CAS  PubMed  Google Scholar 

  191. Trupp M, Scott R, Whittemore SR, Ibáñez CF. Ret-dependent and -independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells. J Biol Chem. 1999;274(30):20885–94.

    CAS  PubMed  Google Scholar 

  192. Paratcha G, Ledda F, Ibáñez CF. The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell. 2003;113(7):867–79.

    CAS  PubMed  Google Scholar 

  193. Enomoto H, Heuckeroth RO, Golden JP, Johnson EM, Milbrandt J. Development of cranial parasympathetic ganglia requires sequential actions of GDNF and neurturin. Development. 2000;127(22):4877–89.

    CAS  PubMed  Google Scholar 

  194. Rossi J, Tomac A, Saarma M, Airaksinen MS. Distinct roles for GFRalpha1 and GFRalpha2 signalling in different cranial parasympathetic ganglia in vivo. Eur J Neurosci. 2000;12(11):3944–52.

    CAS  PubMed  Google Scholar 

  195. Nishino J, Mochida K, Ohfuji Y, Shimazaki T, Meno C, Ohishi S, Matsuda Y, Fujii H, Saijoh Y, Hamada H. GFR alpha3, a component of the artemin receptor, is required for migration and survival of the superior cervical ganglion. Neuron. 1999;23(4):725–36.

    CAS  PubMed  Google Scholar 

  196. Andres R, Forgie A, Wyatt S, Chen Q, de Sauvage FJ, Davies AM. Multiple effects of artemin on sympathetic neurone generation, survival and growth. Development. 2001;128(19):3685–95.

    CAS  PubMed  Google Scholar 

  197. Lindfors PH, Lindahl M, Rossi J, Saarma M, Airaksinen MS. Ablation of persephin receptor glial cell line-derived neurotrophic factor family receptor alpha4 impairs thyroid calcitonin production in young mice. Endocrinology. 2006;147(5):2237–44.

    CAS  PubMed  Google Scholar 

  198. Barlow A, de Graaff E, Pachnis V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron. 2003;40(5):905–16.

    CAS  PubMed  Google Scholar 

  199. Kruger GM, Mosher JT, Tsai YH, Yeager KJ, Iwashita T, Gariepy CE, Morrison SJ. Temporally distinct requirements for endothelin receptor B in the generation and migration of gut neural crest stem cells. Neuron. 2003;40(5):917–29.

    CAS  PubMed  Google Scholar 

  200. Tsui-Pierchala BA, Milbrandt J, Johnson Jr EM. NGF utilizes c-Ret via a novel GFL-independent, inter-RTK signaling mechanism to maintain the trophic status of mature sympathetic neurons. Neuron. 2002;33(2):261–73.

    CAS  PubMed  Google Scholar 

  201. Greco A, Miranda C, Pierotti MA. Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol Cell Endocrinol. 2010;321(1):44–9.

    CAS  PubMed  Google Scholar 

  202. Greco A, Roccato E, Pierotti MA. TRK oncogenes in papillary thyroid carcinoma. Cancer Treat Res. 2004;122:207–19.

    PubMed  Google Scholar 

  203. Hennige AM, Lammers R, Höppner W, Arlt D, Strack V, Teichmann R, Machicao F, Ullrich A, Häring HU, Kellerer M. Inhibition of Ret oncogene activity by the protein tyrosine phosphatase SHP1. Endocrinology. 2001;142(10):4441–7.

    CAS  PubMed  Google Scholar 

  204. Qiao S, Iwashita T, Furukawa T, Yamamoto M, Sobue G, Takahashi M. Differential effects of leukocyte common antigen-related protein on biochemical and biological activities of RET-MEN2A and RET-MEN2B mutant proteins. J Biol Chem. 2001;276(12):9460–7.

    CAS  PubMed  Google Scholar 

  205. Richardson DS, Lai AZ, Mulligan LM. RET ligand-induced internalization and its consequences for downstream signaling. Oncogene. 2006;25(22):3206–11.

    CAS  PubMed  Google Scholar 

  206. Richardson DS, Mulligan LM. Direct visualization of vesicle maturation and plasma membrane protein trafficking. J Fluoresc. 2010;20(1):401–5.

    CAS  PubMed  Google Scholar 

  207. Scott RP, Eketjäll S, Aineskog H, Ibáñez CF. Distinct turnover of alternatively spliced isoforms of the RET kinase receptor mediated by differential recruitment of the Cbl ubiquitin ligase. J Biol Chem. 2005;280(14):13442–9.

    CAS  PubMed  Google Scholar 

  208. Richardson DS, Gujral TS, Peng S, Asa SL, Mulligan LM. Transcript level modulates the inherent oncogenicity of RET/PTC oncoproteins. Cancer Res. 2009;69(11):4861–9.

    CAS  PubMed  Google Scholar 

  209. Pierchala BA, Milbrandt J, Johnson Jr EM. Glial cell line-derived neurotrophic factor-dependent recruitment of Ret into lipid rafts enhances signaling by partitioning Ret from proteasome-dependent degradation. J Neurosci. 2006;26(10):2777–87.

    CAS  PubMed  Google Scholar 

  210. Tsui CC, Pierchala BA. CD2AP and Cbl-3/Cbl-c constitute a critical checkpoint in the regulation of ret signal transduction. J Neurosci. 2008;28(15):8789–800.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Santoro .

Editor information

Editors and Affiliations

Receptor at a glance: RET

Receptor at a glance: RET

Chromosome location

10q11.2

Gene Size (bp)

55 kb

Intron/exon numbers

20/21

mRNA size (5`, ORF, 3`)

7.0 kb; 6.0 kb; 4.5 kb; 3.9 kb

Amino acid number

1114 aa (RET51); 1106 aa (RET43); 1072 aa (RET9)

kDa

150 and 170 kDa

Posttranslational modifications

N- and O-glycosylation

Domains

4 cadherin-like domains (CLD) and 1 cysteine-rich region (CRD) in the extracellular region; 1 transmembrane domain and 1 tyrosine kinase domain (TKD) in the intracellular region split into two subdomains

Ligands

GDNF (glial cell line-derived neurotrophic factor); NRTN (neurturin); ARTN (artemin); PSPN (persephin)

Known dimerizing partners

TRKA; EDNRB

Pathways activated

RAS/RAF/MAP kinase; PI3K/AKT; PLCγ; SRC; STAT3

Tissues expressed

Peripheral and central nervous system; thyroid C-cells; adrenal medulla; developing ureteric bud; spermatogonia

Human diseases

Multiple Endocrine Neoplasia type 2 syndromes (MEN 2A, MEN 2B); sporadic medullary thyroid carcinoma; papillary thyroid carcinoma; lung adenocarcinoma; chronic myelomonocytic leukemia; Spitz tumor; breast and other carcinomas; Hirschsprung’s disease (colonic aganglionosis); congenital anomalies of the kidney or lower urinary tract (CAKUT)

Knockout mouse phenotype

Defective development of enteric nervous system; agenesis or dysgenesis of the kidney; defective spermatogenesis; defective Peyer’s patches; abnormal retinal function

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Melillo, R.M., Santoro, M. (2015). The RET Receptor Family. In: Wheeler, D., Yarden, Y. (eds) Receptor Tyrosine Kinases: Family and Subfamilies. Springer, Cham. https://doi.org/10.1007/978-3-319-11888-8_12

Download citation

Publish with us

Policies and ethics