Skip to main content

Abstract

Two of the most fundamental requirements for the host are the ability to survive periods of starvation and the capacity to mount an effective response against pathogenic invaders while tolerating mucosa-associated commensal microbes. The kynurenine (Kyn) pathway (KP) is at the crossroad of these two fundamental requirements and therefore plays an important role in HIV infection. The combination of HIV infection and tryptophan catalytic bacteria causes CD4 Th17/Th22 dysfunction in the gut mucosa leading to microbial translocation that creates a systemic KP activation cycle. This self-sustaining feedback loop has deleterious effects on disease progression and on neurocognitive impairment in HIV-infected patients while fuelling a systemic state of immune activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AhR:

Aryl hydrocarbon receptor

AIDS:

Acquired immune deficiency syndrome

ART:

Antiretroviral therapy

CSF:

Cerebrospinal fluid

CRP:

C-reactive protein

HAND:

HIV-associated neurocognitive disorder

HIV:

Human immunodeficiency virus

IAld:

Indole-3-aldehyde

IDO:

Indoleamine 2,3-dioxygenase

I-FABP:

Intestinal fatty acid-binding protein

IFN:

Interferon

IL:

Interleukin

KP:

Kynurenine pathway

Kyn:

Kynurenine

NK:

Natural killer cells

sCD14:

Soluble CD14

Treg:

Regulatory T cells

Trp:

Tryptophan

References

  1. Deeks SG, Kitchen CM, Liu L, Guo H, Gascon R, Narvaez AB, et al. Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood. 2004;104(4):942–7. doi:10.1182/blood-2003-09-3333.

    Article  CAS  PubMed  Google Scholar 

  2. Sachdeva M, Fischl MA, Pahwa R, Sachdeva N, Pahwa S. Immune exhaustion occurs concomitantly with immune activation and decrease in regulatory T cells in viremic chronically HIV-1-infected patients. J Acquir Immune Defic Syndr. 2010;54(5):447–54. doi:10.1097/QAI.0b013e3181e0c7d0.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Jenabian MA, Patel M, Kema I, Kanagaratham C, Radzioch D, Thebault P, et al. Distinct tryptophan catabolism and Th17/Treg balance in HIV progressors and elite controllers. PLoS One. 2013;8(10), e78146. doi:10.1371/journal.pone.0078146.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B, et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med. 2006;12(10):1198–202. doi:10.1038/nm1482.

    Article  CAS  PubMed  Google Scholar 

  5. Kaufmann DE, Kavanagh DG, Pereyra F, Zaunders JJ, Mackey EW, Miura T, et al. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat Immunol. 2007;8(11):1246–54. doi:10.1038/ni1515.

    Article  CAS  PubMed  Google Scholar 

  6. Favre D, Mold J, Hunt PW, Kanwar B, Loke P, Seu L, et al. Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci Transl Med. 2010;2(32):32ra6. doi:10.1126/scitranslmed.3000632.

  7. Soliman H, Mediavilla-Varela M, Antonia S. Indoleamine 2,3-dioxygenase: is it an immune suppressor? Cancer J. 2010;16(4):354–9.

    Article  CAS  PubMed  Google Scholar 

  8. Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol. 2000;164(7):3596–9.

    Article  CAS  PubMed  Google Scholar 

  9. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189(9):1363–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010;185(6):3190–8. doi:10.4049/jimmunol.0903670.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Romani L, Zelante T, Luca AD, Iannitti RG, Moretti S, Bartoli A, et al. Microbiota control of a tryptophan-AhR pathway in disease tolerance to fungi. Eur J Immunol. 2014. doi:10.1002/eji.201344406.

    PubMed  Google Scholar 

  12. Bessede A, Gargaro M, Pallotta MT, Matino D, Servillo G, Brunacci C, et al. Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature. 2014;511(7508):184–90. doi:10.1038/nature13323.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Godin-Ethier J, Hanafi LA, Piccirillo CA, Lapointe R. Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin Cancer Res. 2011;17(22):6985–91. doi:10.1158/1078-0432.CCR-11-1331.

    Article  CAS  PubMed  Google Scholar 

  14. Zangerle R, Widner B, Quirchmair G, Neurauter G, Sarcletti M, Fuchs D. Effective antiretroviral therapy reduces degradation of tryptophan in patients with HIV-1 infection. Clin Immunol. 2002;104(3):242–7.

    Article  CAS  PubMed  Google Scholar 

  15. Chung DJ, Rossi M, Romano E, Ghith J, Yuan J, Munn DH, et al. Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood. 2009;114(3):555–63. doi:10.1182/blood-2008-11-191197.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Planes R, Bahraoui E. HIV-1 Tat protein induces the production of IDO in human monocyte derived-dendritic cells through a direct mechanism: effect on T cells proliferation. PLoS One. 2013;8(9), e74551. doi:10.1371/journal.pone.0074551.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Changsirivathanathamrong D, Wang Y, Rajbhandari D, Maghzal GJ, Mak WM, Woolfe C, et al. Tryptophan metabolism to kynurenine is a potential novel contributor to hypotension in human sepsis. Crit Care Med. 2011;39(12):2678–83. doi:10.1097/CCM.0b013e31822827f2.

    CAS  PubMed  Google Scholar 

  18. Huengsberg M, Winer JB, Gompels M, Round R, Ross J, Shahmanesh M. Serum kynurenine-to-tryptophan ratio increases with progressive disease in HIV-infected patients. Clin Chem. 1998;44(4):858–62.

    CAS  PubMed  Google Scholar 

  19. Byakwaga H, Boum 2nd Y, Huang Y, Muzoora C, Kembabazi A, Weiser SD, et al. The kynurenine pathway of tryptophan catabolism, CD4+ T-cell recovery, and mortality among HIV-infected Ugandans initiating antiretroviral therapy. J Infect Dis. 2014;210(3):383–91. doi:10.1093/infdis/jiu115.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hunt PW, Sinclair E, Rodriguez B, Shive C, Clagett B, Funderburg N, et al. Gut epithelial barrier dysfunction and innate immune activation predict mortality in treated HIV infection. J Infect Dis. 2014;210(8):1228–38. doi:10.1093/infdis/jiu238.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lang S, Mary-Krause M, Simon A, Partisani M, Gilquin J, Cotte L, et al. HIV replication and immune status are independent predictors of the risk of myocardial infarction in HIV-infected individuals. Clin Infect Dis. 2012;55(4):600–7. doi:10.1093/cid/cis489.

    Article  CAS  PubMed  Google Scholar 

  22. Tenorio AR, Zheng Y, Bosch RJ, Krishnan S, Rodriguez B, Hunt PW, et al. Soluble markers of inflammation and coagulation but not T-Cell activation predict non-AIDS-defining morbid events during suppressive antiretroviral treatment. J Infect Dis. 2014;210(8):1248–59. doi:10.1093/infdis/jiu254.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Serrano-Villar S, Sainz T, Lee SA, Hunt PW, Sinclair E, Shacklett BL, et al. HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality. PLoS Pathog. 2014;10(5), e1004078. doi:10.1371/journal.ppat.1004078.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Boulware DR, Hullsiek KH, Puronen CE, Rupert A, Baker JV, French MA, et al. Higher levels of CRP, D-dimer, IL-6, and hyaluronic acid before initiation of antiretroviral therapy (ART) are associated with increased risk of AIDS or death. J Infect Dis. 2011;203(11):1637–46. doi:10.1093/infdis/jir134.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Justice AC, Freiberg MS, Tracy R, Kuller L, Tate JP, Goetz MB, et al. Does an index composed of clinical data reflect effects of inflammation, coagulation, and monocyte activation on mortality among those aging with HIV? Clin Infect Dis. 2012;54(7):984–94. doi:10.1093/cid/cir989.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hunt PW, Cao HL, Muzoora C, Ssewanyana I, Bennett J, Emenyonu N, et al. Impact of CD8+ T-cell activation on CD4+ T-cell recovery and mortality in HIV-infected Ugandans initiating antiretroviral therapy. AIDS. 2011;25(17):2123–31. doi:10.1097/QAD.0b013e32834c4ac1.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Smith DG, Guillemin GJ, Pemberton L, Kerr S, Nath A, Smythe GA, et al. Quinolinic acid is produced by macrophages stimulated by platelet activating factor, Nef and Tat. J Neurovirol. 2001;7(1):56–60. doi:10.1080/135502801300069692.

    Article  CAS  PubMed  Google Scholar 

  28. Klatt NR, Chomont N, Douek DC, Deeks SG. Immune activation and HIV persistence: implications for curative approaches to HIV infection. Immunol Rev. 2013;254(1):326–42. doi:10.1111/imr.12065.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Schroecksnadel K, Zangerle R, Bellmann-Weiler R, Garimorth K, Weiss G, Fuchs D. Indoleamine-2, 3-dioxygenase and other interferon-gamma-mediated pathways in patients with human immunodeficiency virus infection. Curr Drug Metab. 2007;8(3):225–36.

    Article  CAS  PubMed  Google Scholar 

  30. Jenabian MA, Ancuta P, Gilmore N, Routy JP. Regulatory T cells in HIV infection: can immunotherapy regulate the regulator? Clin Dev Immunol. 2012;2012:908314. doi:10.1155/2012/908314.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Shaw JM, Hunt PW, Critchfield JW, McConnell DH, Garcia JC, Pollard RB, et al. Increased frequency of regulatory T cells accompanies increased immune activation in rectal mucosae of HIV-positive noncontrollers. J Virol. 2011;85(21):11422–34. doi:10.1128/JVI.05608-11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Vyboh K, Jenabian MA, Mehraj V, Routy JP. HIV and the gut microbiota, partners in crime: breaking the vicious cycle to unearth new therapeutic targets. J Immunol Res. 2015;2015:614127.

    Google Scholar 

  33. Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ, et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med. 2013;5(193):193ra91. doi:10.1126/scitranslmed.3006438.

  34. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–5. doi:10.1073/pnas.0706625104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Perez-Santiago J, Gianella S, Massanella M, Spina CA, Karris MY, Var SR, et al. Gut Lactobacillales are associated with higher CD4 and less microbial translocation during HIV infection. AIDS. 2013;27(12):1921–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39(2):372–85. doi:10.1016/j.immuni.2013.08.003.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun. 2014;38:1–12. doi:10.1016/j.bbi.2013.12.015.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Kandanearatchi A, Brew BJ. The kynurenine pathway and quinolinic acid: pivotal roles in HIV associated neurocognitive disorders. FEBS J. 2012;279(8):1366–74. doi:10.1111/j.1742-4658.2012.08500.x.

    Article  CAS  PubMed  Google Scholar 

  39. Mateen FJ, Shinohara RT, Carone M, Miller EN, McArthur JC, Jacobson LP, et al. Neurologic disorders incidence in HIV+ vs HIV- men: Multicenter AIDS Cohort Study, 1996–2011. Neurology. 2012;79(18):1873–80. doi:10.1212/WNL.0b013e318271f7b8.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Heyes MP, Brew BJ, Martin A, Price RW, Salazar AM, Sidtis JJ, et al. Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann Neurol. 1991;29(2):202–9. doi:10.1002/ana.410290215.

    Article  CAS  PubMed  Google Scholar 

  41. Guillemin GJ, Smith DG, Smythe GA, Armati PJ, Brew BJ. Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv Exp Med Biol. 2003;527:105–12.

    Article  CAS  PubMed  Google Scholar 

  42. Cassol E, Misra V, Dutta A, Morgello S, Gabuzda D. Cerebrospinal fluid metabolomics reveals altered waste clearance and accelerated aging in HIV patients with neurocognitive impairment. AIDS. 2014;28(11):1579–91. doi:10.1097/QAD.0000000000000303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Owe-Young R, Webster NL, Mukhtar M, Pomerantz RJ, Smythe G, Walker D, et al. Kynurenine pathway metabolism in human blood-brain-barrier cells: implications for immune tolerance and neurotoxicity. J Neurochem. 2008;105(4):1346–57. doi:10.1111/j.1471-4159.2008.05241.x.

    Article  CAS  PubMed  Google Scholar 

  44. Fu X, Lawson MA, Kelley KW, Dantzer R. HIV-1 Tat activates indoleamine 2,3 dioxygenase in murine organotypic hippocampal slice cultures in a p38 mitogen-activated protein kinase-dependent manner. J Neuroinflammation. 2011;8:88. doi:10.1186/1742-2094-8-88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Martinez P, Tsai AC, Muzoora C, Kembabazi A, Weiser SD, Huang Y, et al. Reversal of the kynurenine pathway of tryptophan catabolism may improve depression in ART-treated HIV-infected Ugandans. J Acquir Immune Defic Syndr. 2014;65(4):456–62. doi:10.1097/QAI.0000000000000062.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Munn DH. Blocking IDO, activity to enhance anti-tumor immunity. Front Biosci (Elite Ed). 2012;4:734–45.

    Article  Google Scholar 

  47. Pantouris G, Mowat CG. Antitumour agents as inhibitors of tryptophan 2,3-dioxygenase. Biochem Biophys Res Commun. 2014;443(1):28–31. doi:10.1016/j.bbrc.2013.11.037.

    Article  CAS  PubMed  Google Scholar 

  48. Hanafi LA, Gauchat D, Godin-Ethier J, Possamai D, Duvignaud JB, Leclerc D, et al. Fludarabine downregulates indoleamine 2,3-dioxygenase in tumors via a proteasome-mediated degradation mechanism. PLoS One. 2014;9(6), e99211. doi:10.1371/journal.pone.0099211.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Soliman HH, Jackson E, Neuger T, Dees EC, Harvey RD, Han H, et al. A first in man phase I trial of the oral immunomodulator, indoximod, combined with docetaxel in patients with metastatic solid tumors. Oncotarget. 2014;5(18):8136–46.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Dzutsev A, Goldszmid RS, Viaud S, Zitvogel L, Trinchieri G. The role of the microbiota in inflammation, carcinogenesis and cancer therapy. Eur J Immunol. 2014. doi:10.1002/eji.201444972.

    PubMed  Google Scholar 

  51. Hotchkiss RS, Moldawer LL. Parallels between cancer and infectious disease. N Engl J Med. 2014;371(4):380–3. doi:10.1056/NEJMcibr1404664.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Angie Massicotte and Dr. Wei Cao for coordination and assistance. This work was supported by the Canadian Institutes of Health Research (grant MOP #103230 and CTN #257) and Fonds de la Recherche Québec-Santé (FRQ-S): Thérapie cellulaire and Réseau SIDA/Maladies infectieuses, Québec, Canada. Dr. Vikram Mehraj is supported by FRQ-S postdoctoral fellowship award. Dr. Jean-Pierre Routy is a holder of Louis Lowenstein Chair in Hematology and Oncology, McGill University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Routy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Routy, JP., Mehraj, V., Vyboh, K. (2015). Role of Kynurenine Pathway in HIV/AIDS. In: Mittal, S. (eds) Targeting the Broadly Pathogenic Kynurenine Pathway. Springer, Cham. https://doi.org/10.1007/978-3-319-11870-3_9

Download citation

Publish with us

Policies and ethics