Skip to main content

Inhibition of the Kynurenine Pathway of Tryptophan Metabolism

  • Chapter
Targeting the Broadly Pathogenic Kynurenine Pathway

Abstract

This chapter summarizes the current state-of-the-art of inhibitors of the kynurenine pathway. After a brief presentation regarding the kynurenine pathway itself and the enzymes involved, the main series of inhibitors that were discovered are presented by targets. Among the enzymes investigated in the present study are the indoleamine 2,3-dioxygenases IDO1 and TDO, the kynurenine-aminotransferases (KATs), the kynureninase, the kynurenine 3-monooxygenase, and the 3-hydroxyanthranilic monooxygenase. All these enzymes are responsible for the formation of tryptophan metabolites, collectively called the kynurenines and thus constitute very interesting targets in various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1MT:

1-Methyl-tryptophan

3-HAO:

3-Hydroxyanthranilic monooxygenase

CNS:

Central nervous system

HTS:

High throughput screening

IDO1:

Indoleamine 2,3-dioxygenase 1

KATs:

Kynurenine aminotransferases

KMO:

Kynurenine-3-monooxygenase (also called kynurenine 3-hydroxylase)

LE:

Ligand efficiency

mM:

Millimolar

MTH-Trp:

N-methyl-thiohydantoine-tryptophane

NAD:

Nicotinamide Adenine Dinucleotide

nM:

Nanomolar

PIM:

4-Phenylimidazole

PLP:

Pyridoxal-5′-phosphate

SAR:

Structure–activity relationships

TDO:

Tryptophan 2,3-dioxygenase

μM:

Micromolar

References

  1. Peters JC. Tryptophan nutrition and metabolism: an overview. Adv Exp Med Biol. 1991;294:345–58.

    Article  CAS  PubMed  Google Scholar 

  2. Bender DA. Biochemistry of tryptophan in health and disease. Mol Aspects Med. 1983;6(2):101–97.

    Article  CAS  PubMed  Google Scholar 

  3. Platten M, Wick W, Van den Eynde BJ. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res. 2012;72(21):5435–40. doi:10.1158/0008-5472.CAN-12-0569.

    Article  CAS  PubMed  Google Scholar 

  4. Vecsei L, Szalardy L, Fulop F, Toldi J. Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov. 2013;12(1):64–82. doi:10.1038/nrd3793.

    Article  CAS  PubMed  Google Scholar 

  5. Dolusic E, Frederick R. Indoleamine 2,3-dioxygenase inhibitors: a patent review (2008–2012). Expert Opin Ther Pat. 2013;23(10):1367–81. doi:10.1517/13543776.2013.827662.

    Article  CAS  PubMed  Google Scholar 

  6. Cady SG, Sono M. 1-methyl-DL-tryptophan, β-(3-benzofuranyl)-DL-alanine (the oxygen analog of tryptophan), and β-[3-benzo(b)thienyl]-DL-alanine (the sulfur analog of tryptophan) are competitive inhibitors for indoleamine 2,3-dioxygenase. Arch Biochem Biophys. 1991;291(2):326–33.

    Article  CAS  PubMed  Google Scholar 

  7. Lob S, Konigsrainer A, Schafer R, Rammensee HG, Opelz G, Terness P. Levo- but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells. Blood. 2008;111(4):2152–4.

    Article  CAS  PubMed  Google Scholar 

  8. Qian F, Villella J, Wallace PK, Mhawech-Fauceglia P, Tario Jr JD, Andrews C, et al. Efficacy of levo-1-methyl tryptophan and dextro-1-methyl tryptophan in reversing indoleamine-2,3-dioxygenase-mediated arrest of T-cell proliferation in human epithelial ovarian cancer. Cancer Res. 2009;69(13):5498–504.

    Article  CAS  PubMed  Google Scholar 

  9. Metz R, DuHadaway JB, Kamasani U, Laury-Kleintop L, Muller AJ, Prendergast GC. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res. 2007;67(15):7082–7.

    Article  CAS  PubMed  Google Scholar 

  10. Platten M, Wick W, Van Den Eynde BJ. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res. 2012;72(21):5435–40.

    Article  CAS  PubMed  Google Scholar 

  11. Eguchi N, Watanabe Y, Kawanishi K, Hashimoto Y, Hayaishi O. Inhibition of indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase by beta-carboline and indole derivatives. Arch Biochem Biophys. 1984;232(2):602–9.

    Article  CAS  PubMed  Google Scholar 

  12. Gaspari P, Banerjee T, Malachowski WP, Muller AJ, Prendergast GC, DuHadaway J, et al. Structure-activity study of brassinin derivatives as indoleamine 2,3-dioxygenase inhibitors. J Med Chem. 2006;49(2):684–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Dolusic E, Larrieu P, Blanc S, Sapunaric F, Norberg B, Moineaux L, et al. Indol-2-yl ethanones as novel indoleamine 2,3-dioxygenase (IDO) inhibitors. Bioorg Med Chem. 2011;19(4):1550–61. doi:10.1016/j.bmc.2010.12.032.

    Article  CAS  PubMed  Google Scholar 

  14. Dolusic E, Larrieu P, Blanc S, Sapunaric F, Pouyez J, Moineaux L, et al. Discovery and preliminary SARs of keto-indoles as novel indoleamine 2,3-dioxygenase (IDO) inhibitors. Eur J Med Chem. 2011;46(7):3058–65. doi:10.1016/j.ejmech.2011.02.049.

    Article  CAS  PubMed  Google Scholar 

  15. Brastianos HC, Vottero E, Patrick BO, Van Soest R, Matainaho T, Mauk AG, et al. Exiguamine A, an indoleamine-2,3-dioxygenase (IDO) inhibitor isolated from the marine sponge Neopetrosia exigua. J Am Chem Soc. 2006;128(50):16046–7.

    Article  CAS  PubMed  Google Scholar 

  16. Carr G, Chung MKW, Mauk AG, Andersen RJ. Synthesis of indoleamine 2,3-dioxygenase inhibitory analogues of the sponge alkaloid exiguamine A. J Med Chem. 2008;51(9):2634–7.

    Article  CAS  PubMed  Google Scholar 

  17. Kumar S, Malachowski WP, DuHadaway JB, LaLonde JM, Carroll PJ, Jaller D, et al. Indoleamine 2,3-dioxygenase is the anticancer target for a novel series of potent naphthoquinone-based inhibitors. J Med Chem. 2008;51(6):1706–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Sono M, Cady SG. Enzyme kinetic and spectroscopic studies of inhibitor and effector interactions with indoleamine 2,3-dioxygenase. 1. Norharman and 4-phenylimidazole binding to the enzyme as inhibitors and heme ligands. Biochemistry. 1989;28(13):5392–9.

    Article  CAS  PubMed  Google Scholar 

  19. Sugimoto H, Oda SI, Otsuki T, Hino T, Yoshida T, Shiro Y. Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proc Natl Acad Sci USA. 2006;103(8):2611–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kumar S, Jaller D, Patel B, LaLonde JM, DuHadaway JB, Malachowski WP, et al. Structure based development of phenylimidazole-derived inhibitors of indoleamine 2,3-dioxygenase. J Med Chem. 2008;51(16):4968–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Jaipuri F, Kesharwani T, Kumar S, Mautino M, J. W, inventors; Newlink Genetics, assignee. Fused imidazole derivatives useful as ido inhibitors. USA patent WO2012142237. 2012 20110415.

    Google Scholar 

  22. Yue EW, Douty B, Wayland B, Bower M, Liu X, Leffet L, et al. Discovery of potent competitive inhibitors of indoleamine 2,3-dioxygenase with in vivo pharmacodynamic activity and efficacy in a mouse melanoma model. J Med Chem. 2009;52(23):7364–7.

    Article  CAS  PubMed  Google Scholar 

  23. Meininger D, Zalameda L, Liu Y, Stepan LP, Borges L, McCarter JD, et al. Purification and kinetic characterization of human indoleamine 2,3-dioxygenases 1 and 2 (IDO1 and IDO2) and discovery of selective IDO1 inhibitors. Biochim Biophys Acta. 2011;1814(12):1947–54. doi:10.1016/j.bbapap.2011.07.023.

    Article  CAS  PubMed  Google Scholar 

  24. Tojo S, Kohno T, Tanaka T, Kamioka S, Ota Y, Ishii T, et al. Crystal structures and structure-activity relationships of imidazothiazole derivatives as IDO1 inhibitors. ACS Med Chem Lett. 2014;5(10):1119–23. doi:10.1021/ml500247w.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478(7368):197–203.

    Article  CAS  PubMed  Google Scholar 

  26. Pilotte L, Larrieu P, Stroobant V, Colau D, Dolušić E, Frédérick R, et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci USA. 2012;109(7):2497–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Dolušić E, Larrieu P, Moineaux L, Stroobant V, Pilotte L, Colau D, et al. Tryptophan 2,3-dioxygenase (TDO) inhibitors. 3-(2-(pyridyl)ethenyl)indoles as potential anticancer immunomodulators. J Med Chem. 2011;54(15):5320–34.

    Article  PubMed  Google Scholar 

  28. Yu P, Di Prospero NA, Sapko MT, Cai T, Chen A, Melendez-Ferro M, et al. Biochemical and phenotypic abnormalities in kynurenine aminotransferase II-deficient mice. Mol Cell Biol. 2004;24(16):6919–30. doi:10.1128/MCB.24.16.6919-6930.2004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Guidetti P, Okuno E, Schwarcz R. Characterization of rat brain kynurenine aminotransferases I and II. J Neurosci Res. 1997;50(3):457–65.

    Article  CAS  PubMed  Google Scholar 

  30. Han Q, Robinson H, Cai T, Tagle DA, Li J. Structural insight into the inhibition of human kynurenine aminotransferase I/glutamine transaminase K. J Med Chem. 2009;52(9):2786–93. doi:10.1021/jm9000874.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Pellicciari R, Filosa R, Fulco MC, Marinozzi M, Macchiarulo A, Novak C, et al. Synthesis and preliminary biological evaluation of 2′-substituted 2-(3′-carboxybicyclo[1.1.1]pentyl)glycine derivatives as group I selective metabotropic glutamate receptor ligands. ChemMedChem. 2006;1(3):358–65. doi:10.1002/cmdc.200500071.

    Article  CAS  PubMed  Google Scholar 

  32. Pellicciari R, Venturoni F, Bellocchi D, Carotti A, Marinozzi M, Macchiarulo A, et al. Sequence variants in kynurenine aminotransferase II (KAT II) orthologs determine different potencies of the inhibitor S-ESBA. ChemMedChem. 2008;3(8):1199–202. doi:10.1002/cmdc.200800109.

    Article  CAS  PubMed  Google Scholar 

  33. Henderson JL, Sawant-Basak A, Tuttle JB, Dounay AB, McAllister LA, Pandit J, et al. Discovery of hydroxamate bioisosteres as KAT II inhibitors with improved oral bioavailability and pharmacokinetics. MedChemComm. 2013;4(1):125–9. doi:10.1039/C2MD20166F.

    Article  CAS  Google Scholar 

  34. Dua RK, Taylor EW, Phillips RS. 5-Aryl-L-cysteine S, S-dioxides: design, synthesis, and evaluation of a new class of inhibitors of kynureninase. J Am Chem Soc. 1993;115(4):1264–70.

    Article  CAS  Google Scholar 

  35. Pellicciari R, Natalini B, Costantino G, Mahmoud MR, Mattoli L, Sadeghpour BM, et al. Modulation of the kynurenine pathway in search for new neuroprotective agents. Synthesis and preliminary evaluation of (m-Nitrobenzoyl)alanine, a potent inhibitor of Kynurenine-3-hydroxylase. J Med Chem. 1994;37(5):647–55.

    Article  CAS  PubMed  Google Scholar 

  36. Fitzgerald DH, Muirhead KM, Botting NP. A comparative study on the inhibition of human and bacterial kynureninase by novel bicyclic kynurenine analogues. Bioorg Med Chem. 2001;9(4):983–9.

    Article  CAS  PubMed  Google Scholar 

  37. Walsh HA, Leslie PL, O'Shea KC, Botting NP. 2-Amino-4-[3′-hydroxyphenyl]-4-hydroxybutanoic acid; a potent inhibitor of rat and recombinant human kynureninase. Bioorg Med Chem Lett. 2002;12(3):361–3.

    Article  CAS  PubMed  Google Scholar 

  38. Lima S, Kumar S, Gawandi V, Momany C, Phillips RS. Crystal structure of the homo sapiens kynureninase-3-hydroxyhippuric acid inhibitor complex: Insights into the molecular basis of kynureninase substrate specificity. J Med Chem. 2009;52(2):389–96.

    Article  CAS  PubMed  Google Scholar 

  39. Carpenedo R, Chiarugi A, Russi P, Lombardi G, Carlà V, Pellicciari R, et al. Inhibitors of kynurenine hydroxylase and kynureninase increase cerebral formation of kynurenate and have sedative and anticonvulsant activities. Neuroscience. 1994;61(2):237–44.

    Article  CAS  PubMed  Google Scholar 

  40. Speciale C, Wu HQ, Cini M, Marconi M, Varasi M, Schwarcz R. (R, S)-3,4-dichlorobenzoylalanine (FCE 28833A) causes a large and persistent increase in brain kynurenic acid levels in rats. Eur J Pharmacol. 1996;315(3):263–7.

    Article  CAS  PubMed  Google Scholar 

  41. Natalini B, Mattoli L, Pellicciari R, Carpenedo R, Chiarugi A, Moroni F. Synthesis and activity of enantiopure (S) (m-nitrobenzoyl) alanine, potent kynurenine-3-hydroxylase inhibitor. Bioorg Med Chem Lett. 1995;5(14):1451–4.

    Article  CAS  Google Scholar 

  42. Reinhard Jr JF. Pharmacological manipulation of brain kynurenine metabolism. Ann NY Acad Sci. 2004;1035:335–49.

    Article  CAS  PubMed  Google Scholar 

  43. Röver S, Cesura AM, Huguenin P, Kettler R, Szente A. Synthesis and biochemical evaluation of N-(4-phenylthiazol-2- yl)benzenesulfonamides as high-affinity inhibitors of kynurenine 3- hydroxylase. J Med Chem. 1997;40(26):4378–85.

    Article  PubMed  Google Scholar 

  44. Pellicciari R, Amori L, Costantino G, Giordani A, Macchiarulo A, Mattoli L, et al. Modulation of the kynurine pathway of tryptophan metabolism in search for neuroprotective agents. Focus on kynurenine-3-hydroxylase. Adv Exp Med Biol. 2003;527:621–8.

    Article  CAS  PubMed  Google Scholar 

  45. Heidempergher F, Pevarello P, Pillan A, Pinciroli V, Della Torre A, Speciale C, et al. Pyrrolo[3,2-c]quinoline derivatives: a new class of kynurenine-3-hydroxylase inhibitors. II. Farmaco. 1999;54(3):152–60.

    Article  CAS  PubMed  Google Scholar 

  46. Walsh JL, Todd WP, Carpenter BK, Schwarcz R. 4-Halo-3-hydroxyanthranilic acids: potent competitive inhibitors of 3-hydroxy-anthranilic acid oxygenase in vitro. Biochem Pharmacol. 1991;42(5):985–90.

    Article  CAS  PubMed  Google Scholar 

  47. Linderberg M, Hellberg S, Björk S, Gotthammar B, Högberg T, Persson K, et al. Synthesis and QSAR of substituted 3-hydroxyanthranilic acid derivatives as inhibitors of 3-hydroxyanthranilic acid dioxygenase (3-HAO). Eur J Med Chem. 1999;34(9):729–44.

    Article  CAS  Google Scholar 

  48. Vallerini GP, Amori L, Beato C, Tararina M, Wang XD, Schwarcz R, et al. 2-Aminonicotinic acid 1-oxides are chemically stable inhibitors of quinolinic acid synthesis in the mammalian brain: a step toward new antiexcitotoxic agents. J Med Chem. 2013;56(23):9482–95. doi:10.1021/jm401249c.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

RF wishes to thank Dr. Eduard Dolusic for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Frédérick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frédérick, R. (2015). Inhibition of the Kynurenine Pathway of Tryptophan Metabolism. In: Mittal, S. (eds) Targeting the Broadly Pathogenic Kynurenine Pathway. Springer, Cham. https://doi.org/10.1007/978-3-319-11870-3_29

Download citation

Publish with us

Policies and ethics