Skip to main content

The Role of Kynurenine Pathway Metabolites in Neuropsychiatric Disorders

  • Chapter
Targeting the Broadly Pathogenic Kynurenine Pathway

Abstract

In recent years, the role of kynurenine and its neuroactive metabolites as they relate to human disease has been intensely studied. Though much work has focused on kynurenine metabolism in neurodegenerative diseases, it is becoming clear that disruption of this pathway can have profound behavioral effects that are also relevant for neuropsychiatric indications. The following chapter will review both preclinical and clinical studies where kynurenine and its most abundant metabolic products were evaluated in relation to a range of highly prevalent neuropsychiatric disorders including schizophrenia, depression, and ADHD. Each section will summarize the kynurenine disruptions thought to be associated with a particular disorder, discuss the functional consequences of these effects, and speculate on means to improve unmet medical needs through manipulation of the kynurenine pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-MT:

1-Methyl tryptophan

3-HANA:

3-Hydroxyanthranilic acid

α7nAChR:

α7 Nicotinic acetylcholine receptors

AA:

Anthranillic acid

BCG:

Bacillus Calmette-Guerin

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

FST:

Forced swim test

IDO:

Indoleamine 2,3-dioxygenase

3-HK:

3-Hydroxykynurenine

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

KATs:

Kynurenine aminotransferases

KMO:

Kynurenine monooxygenase

KOKP:

Kynurenine pathway Knockout

KYN:

l-Kynurenine

KYNA:

Kynurenic acid

LPS:

Magnesium

MDD:

Major depressive disorde

NMDA:

N-methyl-d-aspartate

QUIN:

Quinolinic acid

SNP:

Single-nucleotide polymorphism

TDO:

Tryptophan 2,3-dioxygenase

TTrp:

tryptophan

References

  1. Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology. 2012;37(1):137–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Schwarcz R, et al. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13(7):465–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Campbell BM, et al. Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci. 2014;8:12.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Foster AC, White RJ, Schwarcz R. Synthesis of quinolinic acid by 3-hydroxyanthranilic acid oxygenase in rat brain tissue in vitro. J Neurochem. 1986;47(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  5. Uemura T, Hirai K. Kynurenine 3-monooxygenase activity of rat brain mitochondria determined by high performance liquid chromatography with electrochemical detection. Adv Exp Med Biol. 1991;294:531–4.

    Article  CAS  PubMed  Google Scholar 

  6. Birch PJ, Grossman CJAG, Hayes AG. Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor. Eur J Pharmacol. 1988;154(1):85–7.

    Article  CAS  PubMed  Google Scholar 

  7. Hilmas C, et al. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci. 2001;21(19):7463–73.

    CAS  PubMed  Google Scholar 

  8. Wang J, et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem. 2006;281(31):22021–8.

    Article  CAS  PubMed  Google Scholar 

  9. DiNatale BC, et al. Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol Sci. 2010;115(1):89–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Fukui S, et al. Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem. 1991;56(6):2007–17.

    Article  CAS  PubMed  Google Scholar 

  11. Gal EM, Sherman AD. Synthesis and metabolism of L-kynurenine in rat brain. J Neurochem. 1978;30(3):607–13.

    Article  CAS  PubMed  Google Scholar 

  12. Stone JM, Morrison PD, Pilowsky LS. Glutamate and dopamine dysregulation in schizophrenia--a synthesis and selective review. J Psychopharmacol. 2007;21(4):440–52.

    Article  CAS  PubMed  Google Scholar 

  13. Keefe RS. Cognitive deficits in patients with schizophrenia: effects and treatment. J Clin Psychiatry. 2007;68 Suppl 14:8–13.

    PubMed  Google Scholar 

  14. Goldberg JF, Chengappa KN. Identifying and treating cognitive impairment in bipolar disorder. Bipolar Disord. 2009;11 Suppl 2:123–37.

    Article  PubMed  Google Scholar 

  15. Schwarcz R, et al. Increased cortical kynurenate content in schizophrenia. Biol Psychiatry. 2001;50(7):521–30.

    Article  CAS  PubMed  Google Scholar 

  16. Sathyasaikumar KV, et al. Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia. Schizophr Bull. 2011;37(6):1147–56.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Erhardt S, et al. Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett. 2001;313(1-2):96–8.

    Article  CAS  PubMed  Google Scholar 

  18. Nilsson LK, et al. Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophr Res. 2005;80(2-3):315–22.

    Article  CAS  PubMed  Google Scholar 

  19. Linderholm KR, et al. Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr Bull. 2012;38(3):426–32.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Miller CL, et al. Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain Res. 2006;1073–1074:25–37.

    Article  PubMed  Google Scholar 

  21. Schwarcz R, et al. Cerebrospinal fluid levels of quinolinic acid in Huntington's disease and schizophrenia. Ann Neurol. 1988;24(4):580–2.

    Article  CAS  PubMed  Google Scholar 

  22. Miller CL, et al. Alterations in kynurenine precursor and product levels in schizophrenia and bipolar disorder. Neurochem Int. 2008;52(6):1297–303.

    Article  CAS  PubMed  Google Scholar 

  23. Olsson SK, et al. Elevated levels of kynurenic acid in the cerebrospinal fluid of patients with bipolar disorder. J Psychiatry Neurosci. 2010;35(3):195–9.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Olsson SK, et al. Cerebrospinal fluid kynurenic acid is associated with manic and psychotic features in patients with bipolar I disorder. Bipolar Disord. 2012;14(7):719–26.

    Article  CAS  PubMed  Google Scholar 

  25. Miller CL, et al. Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol Dis. 2004;15(3):618–29.

    Article  CAS  PubMed  Google Scholar 

  26. Giorgini F, et al. Targeted deletion of kynurenine 3-monooxygenase in mice: a new tool for studying kynurenine pathway metabolism in periphery and brain. J Biol Chem. 2013;288(51):36554–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Wonodi I, et al. Downregulated kynurenine 3-monooxygenase gene expression and enzyme activity in schizophrenia and genetic association with schizophrenia endophenotypes. Arch Gen Psychiatry. 2011;68(7):665–74.

    Article  CAS  PubMed  Google Scholar 

  28. Lewis CM, et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet. 2003;73(1):34–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Aoyama N, et al. Association study between kynurenine 3-monooxygenase gene and schizophrenia in the Japanese population. Genes Brain Behav. 2006;5(4):364–8.

    Article  CAS  PubMed  Google Scholar 

  30. Holtze M, et al. Kynurenine 3-monooxygenase polymorphisms: relevance for kynurenic acid synthesis in patients with schizophrenia and healthy controls. J Psychiatry Neurosci. 2012;37(1):53–7.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Lavebratt C, et al. The KMO allele encoding Arg452 is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and reduced KMO expression. Mol Psychiatry. 2014;19(3):334–41.

    Article  CAS  PubMed  Google Scholar 

  32. Pocivavsek A, et al. Fluctuations in endogenous kynurenic acid control hippocampal glutamate and memory. Neuropsychopharmacology. 2011;36(11):2357–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Wu HQ, Rassoulpour A, Schwarcz R. Kynurenic acid leads, dopamine follows: a new case of volume transmission in the brain? J Neural Transm. 2007;114(1):33–41.

    Article  PubMed  Google Scholar 

  34. Beggiato S, et al. Kynurenic acid, by targeting alpha7 nicotinic acetylcholine receptors, modulates extracellular GABA levels in the rat striatum in vivo. Eur J Neurosci. 2013;37(9):1470–7.

    Article  PubMed  Google Scholar 

  35. Beggiato S, et al. Endogenous kynurenic acid regulates extracellular GABA levels in the rat prefrontal cortex. Neuropharmacology. 2014;82:11–8.

    Article  CAS  PubMed  Google Scholar 

  36. Erhardt S, Engberg G. Increased phasic activity of dopaminergic neurones in the rat ventral tegmental area following pharmacologically elevated levels of endogenous kynurenic acid. Acta Physiol Scand. 2002;175(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  37. Linderholm KR, et al. Activation of rat ventral tegmental area dopamine neurons by endogenous kynurenic acid: a pharmacological analysis. Neuropharmacology. 2007;53(8):918–24.

    Article  CAS  PubMed  Google Scholar 

  38. Chess AC, Bucci DJ. Increased concentration of cerebral kynurenic acid alters stimulus processing and conditioned responding. Behav Brain Res. 2006;170(2):326–32.

    Article  CAS  PubMed  Google Scholar 

  39. Chess AC, Landers AM, Bucci DJ. L-kynurenine treatment alters contextual fear conditioning and context discrimination but not cue-specific fear conditioning. Behav Brain Res. 2009;201(2):325–31.

    Article  CAS  PubMed  Google Scholar 

  40. Chess AC, et al. Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophr Bull. 2007;33(3):797–804.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Alexander KS, et al. Acute elevations of brain kynurenic acid impair cognitive flexibility: normalization by the alpha7 positive modulator galantamine. Psychopharmacology (Berl). 2012;220(3):627–37.

    Article  CAS  Google Scholar 

  42. Erhardt S, et al. Endogenous kynurenic acid disrupts prepulse inhibition. Biol Psychiatry. 2004;56(4):255–60.

    Article  CAS  PubMed  Google Scholar 

  43. Potter MC, et al. Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior. Neuropsychopharmacology. 2010;35(8):1734–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Alexander KS, et al. Early developmental elevations of brain kynurenic acid impair cognitive flexibility in adults: reversal with galantamine. Neuroscience. 2013;238:19–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Pocivavsek A, et al. Continuous kynurenine administration during the prenatal period, but not during adolescence, causes learning and memory deficits in adult rats. Psychopharmacology (Berl). 2014;231(14):2799–809.

    Article  CAS  Google Scholar 

  46. Pocivavsek A, et al. Pre- and postnatal exposure to kynurenine causes cognitive deficits in adulthood. Eur J Neurosci. 2012;35(10):1605–12.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Wu HQ, et al. Targeting kynurenine aminotransferase II in psychiatric diseases: promising effects of an orally active enzyme inhibitor. Schizophr Bull. 2014;40 Suppl 2:S152–8.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Kozak R, et al. Reduction of brain kynurenic Acid improves cognitive function. J Neurosci. 2014;34(32):10592–602.

    Article  PubMed  Google Scholar 

  49. Kessler RC, et al. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62(6):617–27.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Miller AHM. V.; Raison, C.L., Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65(9):732–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Bonaccorso S, et al. Depression induced by treatment with interferon-alpha in patients affected by hepatitis C virus. J Affect Disord. 2002;72(3):237–41.

    Article  CAS  PubMed  Google Scholar 

  52. Bonaccorso S, et al. Increased depressive ratings in patients with hepatitis C receiving interferon-alpha-based immunotherapy are related to interferon-alpha-induced changes in the serotonergic system. J Clin Psychopharmacol. 2002;22(1):86–90.

    Article  CAS  PubMed  Google Scholar 

  53. Capuron L, et al. Interferon-alpha-induced changes in tryptophan metabolism. relationship to depression and paroxetine treatment. Biol Psychiatry. 2003;54(9):906–14.

    Article  CAS  PubMed  Google Scholar 

  54. Kurz K, et al. Association between increased tryptophan degradation and depression in cancer patients. Curr Opin Clin Nutr Metab Care. 2011;14(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  55. Eisenberger NI, et al. Inflammation and social experience: an inflammatory challenge induces feelings of social disconnection in addition to depressed mood. Brain Behav Immun. 2010;24(4):558–63.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Gabbay V, et al. The possible role of the kynurenine pathway in anhedonia in adolescents. J Neural Transm. 2012;119(2):253–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Gabbay V, et al. The kynurenine pathway in adolescent depression: preliminary findings from a proton MR spectroscopy study. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(1):37–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Raitala A, et al. Association of interferon-gamma +874(T/A) single nucleotide polymorphism with the rate of tryptophan catabolism in healthy individuals. Scand J Immunol. 2005;61(4):387–90.

    Article  CAS  PubMed  Google Scholar 

  59. Oxenkrug G, et al. Interferon-gamma (+874) T/A genotypes and risk of IFN-alpha-induced depression. J Neural Transm. 2011;118(2):271–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Myint AM, et al. Tryptophan metabolism and immunogenetics in major depression: a role for interferon-gamma gene. Brain Behav Immun. 2013;31:128–33.

    Article  CAS  PubMed  Google Scholar 

  61. Smith AK, et al. Association of a polymorphism in the indoleamine- 2,3-dioxygenase gene and interferon-alpha-induced depression in patients with chronic hepatitis C. Mol Psychiatry. 2012;17(8):781–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Cutler JA, et al. Common genetic variation in the indoleamine-2,3-dioxygenase genes and antidepressant treatment outcome in major depressive disorder. J Psychopharmacol. 2012;26(3):360–7.

    Article  CAS  PubMed  Google Scholar 

  63. Steiner J, et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation. 2011;8:94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Sublette ME, et al. Plasma kynurenine levels are elevated in suicide attempters with major depressive disorder. Brain Behav Immun. 2011;25(6):1272–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Erhardt S, et al. Connecting inflammation with glutamate agonism in suicidality. Neuropsychopharmacology. 2013;38(5):743–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Bay-Richter CL. K.R.; Lim, C.K.; Samuelsson, M.; Träskman-Bendz, L.; Guillemin, G.J.; Erhardt, S.; Brundin, L., A role for inflammatory metabolites as modulators of the glutamate N-methyl-d-aspartate receptor in depression and suicidality. Brain Behav Immun. 2014;S0889–1591(14):00404–8.

    Google Scholar 

  67. Dantzer R, et al. Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology. 2011;36(3):426–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Leonard B, Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev. 2012;36(2):764–85.

    Article  CAS  PubMed  Google Scholar 

  69. O'Connor JC, et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry. 2009;14(5):511–22.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Connor TJ, et al. Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-gamma? Neurosci Lett. 2008;441(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  71. Fu X, et al. Central administration of lipopolysaccharide induces depressive-like behavior in vivo and activates brain indoleamine 2,3 dioxygenase in murine organotypic hippocampal slice cultures. J Neuroinflammation. 2010;7:43.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Salazar A, et al. Indoleamine 2,3-dioxygenase mediates anhedonia and anxiety-like behaviors caused by peripheral lipopolysaccharide immune challenge. Horm Behav. 2012;62(3):202–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Dobos N, et al. The role of indoleamine 2,3-dioxygenase in a mouse model of neuroinflammation-induced depression. J Alzheimers Dis. 2012;28(4):905–15.

    CAS  PubMed  Google Scholar 

  74. Gibney SM, et al. Poly I:C-induced activation of the immune response is accompanied by depression and anxiety-like behaviours, kynurenine pathway activation and reduced BDNF expression. Brain Behav Immun. 2013;28:170–81.

    Article  CAS  PubMed  Google Scholar 

  75. Moreau M, et al. Inoculation of Bacillus Calmette-Guerin to mice induces an acute episode of sickness behavior followed by chronic depressive-like behavior. Brain Behav Immun. 2008;22(7):1087–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Moreau M, et al. Bacille Calmette-Guerin inoculation induces chronic activation of peripheral and brain indoleamine 2,3-dioxygenase in mice. J Infect Dis. 2005;192(3):537–44.

    Article  CAS  PubMed  Google Scholar 

  77. O'Connor JC, et al. Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J Neurosci. 2009;29(13):4200–9.

    Article  PubMed Central  PubMed  Google Scholar 

  78. O'Connor JC, et al. Induction of IDO by bacille Calmette-Guerin is responsible for development of murine depressive-like behavior. J Immunol. 2009;182(5):3202–12.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregressionanalysis. Am J Psychiatry. 2007;164(6):942–8.

    Article  PubMed  Google Scholar 

  80. Willcutt EG. The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics. 2012;9(3):490–9.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Biederman J, Faraone S, Milberger S, Guite J, Mick E, Chen L, Mennin D, Marrs A, Ouellette C, Moore P, Spencer T, Norman D, Wilens T, Kraus I, Perrin J. A prospective 4-year follow-up study of attention-deficit hyperactivity and related disorders. Arch Gen Psychiatry. 1996;57:437–46.

    Article  Google Scholar 

  82. Biederman J, Mick E, Faraone SV. Age-dependent decline of symptoms of attention deficit hyperactivity disorder: impact of remission definition and symptom type. Am J Psychiatry. 2000;157:816–8.

    Article  CAS  PubMed  Google Scholar 

  83. Konrad K, Eickhoff SB. Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Hum Brain Mapp. 2010;31(6):904–16.

    Article  PubMed  Google Scholar 

  84. Hart H, Radua J, Nakao T, Mataix-Cols D, Rubia K. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry. 2013;70(2):185–98.

    Article  PubMed  Google Scholar 

  85. Rubia K, Overmeyer S, Taylor E, Brammer M, Williams S, Simmons A, Andrew C, Bullmore ET. Hypofrontality in attention deficit hyperactivity disorder during higher order motor control: a study using fMRI. Am J Psychiatry. 1999;156(6):891–6.

    Article  CAS  PubMed  Google Scholar 

  86. Shaw P, Rabin C. New insights into attention-deficit/hyperactivity disorder using structural neuroimaging. Curr Psychiatry Rep. 2009;11(5):393–8.

    Article  PubMed  Google Scholar 

  87. Rubia K, Overmeyer S, Taylor E, Brammer M, Williams SC, Simmons A, Andrew C, Bullmore ET. Functional frontalisation with age: manning neurodevelopmental trajectories with fMRI. Neurosci Biobehav Rev. 2000;24(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  88. Irwin M, Belendiuk K, McCloskey K, Freedman DX. Tryptophan metabolism in children with attentional deficit disorder. Am J P Psychiatry. 1981;138(8):1082–5.

    Article  CAS  Google Scholar 

  89. Oades RD, et al. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: S100B, cytokines and kynurenine metabolism--effects of medication. Behav Brain Funct. 2010;6:29.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Oades RD. An exploration of the associations of pregnancy and perinatal features with cytokines and tryptophan/kynurenine metabolism in children with attention-deficit hyperactivity disorder (ADHD). Atten Defic Hyperact Disord. 2011;3(4):301–18.

    Article  PubMed  Google Scholar 

  91. Smith TF, Anastopoulos AD, Garrett ME, Arias-Vasquez A, Franke B, Oades RD, Sonuga-Barke E, Asherson P, Gill M, Buitelaar JK, Sergeant JA, Kollins SH, Faraone SV, Ashley-Koch A, IMAGE Consortium. Angiogenic, neurotrophic, and inflammatory system SNPs moderate the association between birth weight and ADHD symptom severity. Am J Med Genet B Neuropsychiatr Genet. 2014;165(8):691–704.

    Article  CAS  Google Scholar 

  92. Zmarowski A, et al. Astrocyte-derived kynurenic acid modulates basal and evoked cortical acetylcholine release. Eur J Neurosci. 2009;29(3):529–38.

    Article  CAS  PubMed  Google Scholar 

  93. Koshy Cherian A, Gritton H, Johnson DE, Young D, Kozak R, Sarter M. A systemically-available kynurenine aminotransferase II (KAT II) inhibitor restores nicotine-evoked glutamatergic activity in the cortex of rats. Neuropharmacology. 2014;82:41–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Campbell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Campbell, B.M., Pocivavsek, A., Notarangelo, F.M., Parachikova, A.I. (2015). The Role of Kynurenine Pathway Metabolites in Neuropsychiatric Disorders. In: Mittal, S. (eds) Targeting the Broadly Pathogenic Kynurenine Pathway. Springer, Cham. https://doi.org/10.1007/978-3-319-11870-3_19

Download citation

Publish with us

Policies and ethics