Skip to main content

Abstract

Tryptophan is an essential amino acid, not only for mammals but also for a broad range of pathogens. The majority of the dietary tryptophan is degraded via the kynurenine pathway to kynurenine and other downstream tryptophan metabolites, together termed “kynurenines”. The induction of the kynurenine pathway in the context of infections is currently the focus of many human and mouse studies. It has been shown that infections with viruses, parasites and bacteria result in a reduction in tryptophan levels and enhanced levels of kynurenines in the plasma/serum and cerebrospinal fluid. These changes influence the survival of pathogens and the activity of the immune system, respectively. On the one hand, low levels of tryptophan mediate antimicrobial effects through tryptophan starvation but also inhibit an adequate immune defence. On the other hand kynurenines exert toxic effects on both pathogens and the cellular immune system. The interplay of all these antimicrobial and immunoregulatory effects of kynurenines is the focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-MT:

1-Methyl tryptophan

3-HK:

3-Hydroxykynurenine

3-HAA:

3-Hydroxyanthranilic acid

CSF:

Cerebrospinal fluid

DCs:

Dendritic cells

IC50 :

Half maximal inhibitory concentrations

IDO:

Indoleamine 2,3-dioxygenase

IDO-2:

Indoleamine 2,3-dioxygenase-2

IFN-γ:

Interferon-γ

KYN:

Kynurenine

Mtb:

Mycobacterium tuberculosis

NO:

Nitric oxide

PA:

Picolinic acid

QUIN:

Quinolinic acid

TDO:

Tryptophan 2,3-dioxygenase

TRP:

Tryptophan

References

  1. Wang Y, Liu H, McKenzie G, Witting PK, Stasch JP, Hahn M, et al. Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat Med. 2010;16(3):279–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kolodziej LR, Paleolog EM, Williams RO. Kynurenine metabolism in health and disease. Amino Acids. 2011;41(5):1173–83.

    Article  CAS  PubMed  Google Scholar 

  3. Mandi Y, Vecsei L. The kynurenine system and immunoregulation. J Neural Transm. 2012;119:197–209.

    Article  CAS  PubMed  Google Scholar 

  4. Belladonna ML, Grohmann U, Guidetti P, Volpi C, Bianchi R, Fioretti MC, Schwarcz R, Fallarino F, Puccetti P. Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J Immunol. 2006;177(1):130–7.

    Article  CAS  PubMed  Google Scholar 

  5. Litzenburger UM, Opitz CA, Sahm F, Rauschenbach KJ, Trump S, Winter M. Constitutive IDO expression in human cancer is sustained by an autocrine signalling loop involving IL-6, STAT3 and the AHR. Oncotarget. 2014;5(4):1038–51.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Chen Y, Guillemin GJ. Kynurenine pathway metabolites in humans: disease and healthy states. Int J Tryptophan Res. 2009;2:1–19.

    PubMed Central  PubMed  Google Scholar 

  7. Huengsberg M, Winer JB, Gompels M, Round R, Ross J, Shahmanesh M. Serum kynurenine-to-tryptophan ratio increases with progressive disease in HIV-infected patients. Clin Chem. 1998;44:858–62.

    CAS  PubMed  Google Scholar 

  8. Look MP, Altfeld M, Kreuzer KA, Riezler R, Stabler SP, Allen RH, et al. Parallel decrease in neurotoxin quinolinic acid and soluble tumor necrosis factor p75 in serum during highly active antiretroviral therapy of HIV type 1 disease. AIDS Res Hum Retroviruses. 2000;16(13):1215–21.

    Article  CAS  PubMed  Google Scholar 

  9. Larrea E, Riezu-Boj JI, Gil-Guerrero L, Casares N, Aldabe R, Sarobe P, et al. Upregulation of indoleamine 2,3-dioxygenase in hepatitis C virus infection. J Virol. 2007;81:3662–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Medana IM, Day NP, Salahifar-Sabet H, Stocker R, Smythe G, Bwanaisa L, et al. Metabolites of the kynurenine pathway of tryptophan metabolism in the cerebrospinal fluid of Malawian children with malaria. J Infect Dis. 2003;188(6):844–9.

    Article  CAS  PubMed  Google Scholar 

  11. Groer MW, Yolken RH, Xiao JC, Beckstead JW, Fuchs D, Mohapatra SS, et al. Prenatal depression and anxiety in toxoplasma gondii-positive women. Am J Obstet Gynecol. 2011;204(5): 433.e1–7. doi:10.1016/j.ajog.2011.01.004.

  12. Huttunen R, Syrjänen J, Aittoniemi J, Oja SS, Raitala A, Laine J, et al. High activity of indoleamine 2,3-dioxygenase enzyme predicts disease severity and case fatality in bacteremic patients. Shock. 2010;33(2):149–54.

    Article  CAS  PubMed  Google Scholar 

  13. Suzuki Y, Suda T, Asada K, Miwa S, Suzuki M, Fujie M, et al. Serum indoleamine 2,3-dioxygenase activity predicts prognosis of pulmonary tuberculosis. Clin Vaccine Immunol. 2012;19(3):436–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Pantoja LG, Miller RD, Ramirez JA, Molestina RE, Summersgill JT. Inhibition of chlamydia pneumonia replication in human aortic smooth muscle cells by gamma interferon-induced indoleamine2,3-dioxygenase activity. Infect Immun. 2000;68(11):6478–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. MacKenzie CR, Hucke C, Müller D, Seidel K, Takikawa O, Däubener W. Growth inhibition of multiresistant enterococci by interferon-gamma-activated human uro-epithelial cells. J Med Microbiol. 1999;48(10):935–41.

    Article  CAS  PubMed  Google Scholar 

  16. Bodaghi B, Goureau O, Zipeto D, Laurent L, Virelizier JL, Michelson S. Role of IFN-gamma-induced indoleamine 2,3-dioxygenase and inducible nitric oxide synthase in the replication of human cytomegalovirus in retinal pigment epithelial cells. J Immunol. 1999;162(2):957–64.

    CAS  PubMed  Google Scholar 

  17. Adams O, Besken K, Oberdörfer C, MacKenzie CR, Rüssing D, Däubener W. Inhibition of human herpes simplex virus type 2 by interferon gamma and tumor necrosis factor alpha is mediated by indoleamine 2,3-dioxygenase. Microbes Infect. 2004;6(9):806–12.

    Article  CAS  PubMed  Google Scholar 

  18. Spekker K, Czesla M, Ince V, Heseler K, Schmidt SK, Schares G, et al. Indoleamine 2,3-dioxygenase is involved in defense against neospora caninum in human and bovine cells. Infect Immun. 2009;77(10):4496–501.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Narui K, Noguchi N, Saito A, Kakimi K, Motomura N, Kubo K, et al. Anti-infectious activity of tryptophan metabolites in the L-tryptophan-L-kynurenine pathway. Biol Pharm Bull. 2009;32(1):41–4.

    Article  CAS  PubMed  Google Scholar 

  20. Nino-Castro A, Abdullah Z, Popov A, Thabet Y, Beyer M, Knolle P, et al. The IDOI-induced kynurenines play a major role in the antimicrobial effect of human myeloid cells against Listeria monocytogenes. Innate Immun. 2014;20(4):401–11.

    Article  PubMed  Google Scholar 

  21. Xie G, Bonner CA, Jensen RA. Dynamic diversity of the tryptophan pathway in chlamydiae: reductive evolution and a novel operon for tryptophan recapture. Genome Biol. 2002;3(9):research0051.

    Google Scholar 

  22. Genestet C, Le Gouellec A, Chaker H, Polack B, Guery B, Toussaint B, et al. Scavenging of reactive oxygen species by tryptophan metabolites helps Pseudomonas aeruginosa escape neutrophil killing. Free Radic Biol Med. 2014;73:400–10.

    Article  CAS  PubMed  Google Scholar 

  23. Däubener W, Schmidt SK, Heseler K, Spekker KH, MacKenzie CR. Antimicrobial and immunoregulatory effector mechanisms in human endothelial cells. Indoleamine 2,3-dioxygenase versus inducible nitric oxide synthase. Thromb Haemost. 2009;102(6):1110–16.

    PubMed  Google Scholar 

  24. Knubel CP, Martinez FF, Fretes RE, Lujan CD, Theumer MG, Cervi L, et al. Indoleamine 2,3-dioxygenase (IDO) is critical for host resistance against Trypanosoma cruzi. FASEB J. 2010;24(8):2689–701.

    Article  CAS  PubMed  Google Scholar 

  25. Knubel CP, Martinez FF, Rodriguez EVA, Altamirano A, Rivarola HW, Lujan CD, et al. 3-Hydroxy kynurenine treatment controls T. cruzi replication and the inflammatory pathology preventing the clinical symptoms of chronic chagas disease. PLoS One. 2011;6(10), e26550. doi:10.1371/journal.pone.0026550.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Peng K, Monack DM. Indoleamine 2,3-dioxygenase 1 is a lung-specific innate immune defense mechanism that inhibits growth of Francisella tularensis tryptophan auxotrophs. Infect Immun. 2010;78(6):2723–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhang YJ, Reddy MC, Ioerger TR, Rothchild AC, Dartois V, Schuster BM. Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell. 2013;155:1296–308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Silva NM, Rodrigues CV, Santoro MM, Reis LFL, Alvarez-Leite JI, Gazzinelli RT. Expression of indoleamine 2,3-dioxygenase, tryptophan degradation, and kynurenine formation during in vivo infection with toxoplasma gondii: Induction by endogenous gamma interferon and requirement of interferon regulatory factor 1. Infect Immun. 2002;70(2):859–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Murakami Y, Hoshi M, Hara A, Takemura M, Arioka Y, Yamamoto Y, et al. Inhibition of increased indoleamine 2,3-dioxygenase activity attenuates Toxoplasma gondii replication in the lung during acute infection. Cytokine. 2012;59:245–51.

    Article  CAS  PubMed  Google Scholar 

  30. Chakravortty D, Hensel M. Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microbes Infect. 2003;5(7):621–7.

    Article  CAS  PubMed  Google Scholar 

  31. Taylor GA, Feng CG, Sher A. Control of IFN-gamma-mediated host resistance to intracellular pathogens by immunity-related GTPases (p47 GTPases). Microbes Infect. 2007;9(14–15):1644–51.

    Article  CAS  PubMed  Google Scholar 

  32. Degrandi D, Kravets E, Konermann C, Beuter-Gunia C, Klümpers V, Lahme S, et al. Murine guanylate binding protein 2 (mGBP2) controls Toxoplasma gondii replication. Proc Natl Acad Sci U S A. 2013;110(1):294–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281(5380):1191–3.

    Article  CAS  PubMed  Google Scholar 

  34. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005;22(5):633–42.

    Article  CAS  PubMed  Google Scholar 

  35. Metz R, Rust S, Duhadaway JB, Mautino MR, Munn DH, Vahanian NN, et al. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: a novel IDO effector pathway targeted by D-1-methyl-tryptophan. Oncoimmunology. 2012;1(9):1460–8.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Müller A, Heseler K, Schmidt SK, Spekker K, MacKenzie CR, Däubener W. The missing link between indoleamine 2,3-dioxygenase mediated antimicrobial and immunoregulatory effects. J Cell Mol Med. 2009;39(10):2755–64.

    Google Scholar 

  37. Terness P, Bauer TM, Röse L, Dufter C, Watzlik A, Simon H, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med. 2002;196(4):447–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for the inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002;196(4):459–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naïve T cells. J Immunol. 2006;176:6752–61.

    Article  CAS  PubMed  Google Scholar 

  40. Guillonneau C, Mintern JD, Hubert FX, Hurt AC, Besra GS, Porcelli S, et al. Combined NKT cell activation and influenza virus vaccination boosts memory CTL generation and protective immunity. Proc Natl Acad Sci U S A. 2009;106:3330–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Donovan MJ, Tripathi V, Favila MA, Geraci NS, Lange MC, Ballhorn W, et al. Indoleamine 2,3-dioxygenase (IDO) induced by Leishmania infection of human dendritic cells. Parasite Immunol. 2012;34(10):464–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Makala LHC. The role of indoleamine 2,3-dioxygenase in regulating host immunity to leishmania infection. J Biomed Sci. 2012;19:5. doi:10.1186/1423-0127-19-5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Makala LH, Baban B, Lemos H, El-Awady AR, Chandler PR, Hou DY, et al. Leishmania major attenuates host immunity by stimulating local indoleamine 2,3-dioxygenase expression. J Infect Dis. 2011;203:715–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Hoshi M, Saito K, Hara A, Taguchi A, Ohtaki H, Tanaka R, et al. The absence of IDO upregulates type I IFN production, resulting in suppression of viral replication in the retrovirus-infected mouse. J Immunol. 2010;185(6):3305–12.

    Article  CAS  PubMed  Google Scholar 

  45. Hoshi M, Matsumoto K, Ito H, Ohtaki H, Arioka Y, Osawa Y, et al. L-tryptophan-kynurenine pathway metabolites regulate type I IFNs of acute viral myocarditis in mice. J Immunol. 2012;188(8):3980–7.

    Article  CAS  PubMed  Google Scholar 

  46. Murakami Y, Hoshi M, Imamura Y, Arioka Y, Yamamoto Y, Saito K. Remarkable role of indoleamine 2,3-dioxygenase and tryptophan metabolites in infectious diseases: potential role in macrophage-mediated inflammatory diseases. Mediators Inflamm. 2013. doi:10.1155/2013/391984.

    Google Scholar 

Download references

Acknowledgements

We thank Dr. T. Bruhn for critical proofreading of the manuscript. The study was supported by German Research Council (DFG) Grant no. RU729 and the Graduate School “Molecules of Infection” Manchot Foundation.

Disclosures

The authors report no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Däubener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eller, S.K., Däubener, W. (2015). Role of Kynurenine Pathway in Infections. In: Mittal, S. (eds) Targeting the Broadly Pathogenic Kynurenine Pathway. Springer, Cham. https://doi.org/10.1007/978-3-319-11870-3_14

Download citation

Publish with us

Policies and ethics