Skip to main content

Role of Kynurenine Pathway in Insulin Resistance: Toward Kynurenine Hypothesis of Insulin Resistance and Diabetes

  • Chapter
Targeting the Broadly Pathogenic Kynurenine Pathway

Abstract

Diabetogenic effect of kynurenine (KYN) derivative of tryptophan (TRP), xanthurenic acid (XA), has been suggested last century. Recent interest to this hypothesis was stimulated by data revealing that TRP–KYN pathway can be upregulated by both chronic low-grade inflammation and stress, the two conditions involved in the pathogenesis of insulin resistance (IR), diabetes type 2 (T2D), and, probably, type 1 (T1D). Pro-inflammatory factors (e.g., interferons) and stress hormones (e.g., cortisol) activate enzymes catalyzing first two steps of TRP–KYN pathway: indoleamine- or tryptophan-2,3-dioxygenases and kynurenine 3-monooxygenase (KMO), resulting in increased formation of KYN and 3-hydroxyKYN (3-HK), respectively. In addition to overproduction of 3-HK, inflammation/stress-induced increased demand for pyridoxal 5′-phosphate (P5P) leads to functional deficiency of P5P. 3-HK is a substrate for two competing pathways dependent on P5P: formation of 3-hydroxyanthranilic acid (3-HAA) catalyzed by kynureninase (KYNase) and formation of xanthurenic acid (XA) catalyzed by 3-HK-transaminase (3-HKT). Since KYNase is more sensitive to P5P deficiency than 3-HKT, inflammation/stress-induced P5P deficiency inhibits KYNase and shifts downstream metabolism of overproduced 3-HK from formation of 3-HAA toward excessive formation of XA. Recent data revealed additional mechanisms of diabetogenic effects of XA, 3-HK, and their derivatives. This chapter suggests that dysregulation of KYN metabolism is one of the mechanisms mediating the impact of chronic low-grade inflammation and/or stress on pathogenesis of IR, T2D, and T1D. Up- and downstream 3-HK derivatives might be used as biomarkers predicting inflammation and/or stress-induced progression from IR to T2D. TRP–KYN pathway might be a new target for prevention and treatment of IR and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-HAA:

3-Hydroxyanthranilic acid

3-HK:

3-Hydroxykynurenine

3-HKT:

3-HK transaminase

HCV:

Hepatitis C virus

IDO:

Indoleamine 2,3-dioxygenase

IFN-γ:

Interferon-gamma

IR:

Insulin resistance

KAT:

Kynurenine aminotransferase

KMO:

Kynurenine 3-aminooxygenase

KYN:

Kynurenine

KYNA:

Kynurenic acid

KYNase:

Kynureninase

NAD:

Nicotinamide adenine dinucleotide

P5P:

Pyridoxal 5′-phosphate

TDO:

Tryptophan 2,3-dioxygenase

T1D:

Type 1 diabetes

T2D:

Type 2 diabetes

TRP:

Tryptophan

XA:

Xanthurenic acid

References

  1. Kotake Y, Ueda T, Mori T, Igaki S, Hattori M. Abnormal tryptophan metabolism and experimental diabetes by xanthurenic acid (XA). Acta Vitaminol Enzymol. 1975;29(1–6):236–9.

    CAS  PubMed  Google Scholar 

  2. Connick LH, Stone TW. The role of kynurenines in diabetes mellitus. Med Hypotheses. 1985;18(4):371–6.

    Article  CAS  PubMed  Google Scholar 

  3. Oxenkrug G. Insulin resistance and dysregulation of tryptophan-kynurenine and kynurenine-nicotinamide adenine dinucleotide metabolic pathways. Mol Neurobiol. 2013;48:294–301. doi:10.1007/s12035-013-8497-4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Oxenkrug G, Ratner R, Summergrad P. Kynurenines and vitamin B6: link between diabetes and depression. J Bioinform Diabetes. 2013;1:1–10.

    Article  Google Scholar 

  5. Gragnoli C. Hypothesis of the neuroendocrine cortisol pathway gene role in the comorbidity of depression, type 2 diabetes, and metabolic syndrome. Appl Clin Genet. 2014;7:43–53. doi:10.2147/TACG.S39993.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    Article  CAS  PubMed  Google Scholar 

  7. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46.

    Article  CAS  PubMed  Google Scholar 

  8. Rosmond R. Stress induced disturbances of the HPA axis: a pathway to Type 2 diabetes? Med Sci Monit. 2003;9(2):RA35–9.

    PubMed  Google Scholar 

  9. Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European prospective investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52(3):812–17.

    Article  CAS  PubMed  Google Scholar 

  10. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13(7):465–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Han Q, Fang J, Li J. 3-Hydroxykynurenine transaminase identity with alanine glyoxylate transaminase. A probable detoxification protein in Aedes aegypti. J Biol Chem. 2002;277(18):15781–7.

    Article  CAS  PubMed  Google Scholar 

  12. Alberati-Giani D, Ricciardi-Castagnoli P, Kohler C, Cesura AM. Regulation of the kynurenine metabolic pathway by interferon-gamma in murine cloned macrophages and microglial cells. J Neurochem. 1996;66(3):996–1004.

    Article  CAS  PubMed  Google Scholar 

  13. Pawlak D, Takada Y, Urano T, Takada A. Serotonergic and kynurenic pathways in rats exposed to foot shock. Brain Res Bull. 2000;52(3):197–2012.

    Article  CAS  PubMed  Google Scholar 

  14. Hayaishi O. Properties and function of indoleamine 2,3-dioxygenase. J Biochem. 1976;79(4):13p–21p.

    CAS  PubMed  Google Scholar 

  15. Christen S, Peterhans E, Stocker R. Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proc Natl Acad Sci U S A. 1990;87(7):2506–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Paul L, Ueland PM, Selhub J. Mechanistic perspective on the relationship between pyridoxal 5’-phosphate and inflammation. Nutr Rev. 2013;71(4):239–44.

    Article  PubMed  Google Scholar 

  17. van de Kamp JL, Smolen A. Response of kynurenine pathway enzymes to pregnancy and dietary level of vitamin B-6. Pharmacol Biochem Behav. 1995;51(4):753–8.

    Article  PubMed  Google Scholar 

  18. Allegri G, Zaccarin D, Ragazzi E, Froldi G, Bertazzo A, Costa CV. Metabolism of tryptophan along the kynurenine pathway in alloxan diabetic rabbits. Adv Exp Med Biol. 2003;527:387–93.

    Article  CAS  PubMed  Google Scholar 

  19. Ciorba MA. Kynurenine pathway metabolites: relevant to vitamin B-6 deficiency and beyond. Am J Clin Nutr. 2013;98(4):863–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ogasawara N, Hagino Y, Kotake Y. Kynurenine-transaminase, kynureninase and the increase of xanthurenic acid excretion. J Biochem. 1962;52:162–6.

    CAS  PubMed  Google Scholar 

  21. Rios-Avila L, Nijhout HF, Reed MC, Sitren HS, Gregory 3rd JF. A mathematical model of tryptophan metabolism via the kynurenine pathway provides insights into the effects of vitamin B-6 deficiency, tryptophan loading, and induction of tryptophan 2,3-dioxygenase on tryptophan metabolites. J Nutr. 2013;143(9):1509–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Okamoto H. Recent advances in physiological and pathological significance of tryptophan-NAD+ metabolites: lessons from insulin-producing pancreatic beta-cells. Adv Exp Med Biol. 2003;527:243–52.

    Article  CAS  PubMed  Google Scholar 

  23. Rudzite V, Fuchs D, Kalnins U, Jurika E, Silava A, Erglis A, et al. Prognostic value of tryptophan load test followed by serum kynurenine determination. Its comparison with pyridoxal-5-phosphate, kynurenine, homocysteine and neopterin amounts. Adv Exp Med Biol. 2003;527:307–15.

    Article  CAS  PubMed  Google Scholar 

  24. Yess N, Price JM, Brown RR, Swan PB, Linkswiler H. Vitamin B6 depletion in man: urinary excretion of tryptophan metabolites. J Nutr. 1964;84:229–36.

    CAS  PubMed  Google Scholar 

  25. Musajo L. Old and new fields of research on the tryptophan. Acta Vitaminol Enzymol. 1975;29(1–6):1–3.

    CAS  PubMed  Google Scholar 

  26. Lepkovsky S, Roboz E, Haagen-Smit AJ. Xanthurenic acid and its role in the tryptophane metabolism of pyridoxine-deficient rats. J Biol Chem. 1943;149:195–201.

    CAS  Google Scholar 

  27. Greenberg LD, Bohr DF, et al. Xanthurenic acid excretion in the human subject on a pyridoxine-deficient diet. Arch Biochem. 1949;21(1):237–9.

    CAS  PubMed  Google Scholar 

  28. Greenberg LD, Rinehart JF. Xanthurenic acid excretion in pyridoxine deficient rhesus monkeys. Fed Proc. 1948;7(1 Pt 1):157.

    CAS  PubMed  Google Scholar 

  29. Hattori M, Kotake Y. Studies on the urinary excretion of xanthurenic acid in diabetics. Acta Vitaminol Enzymol. 1984;6(3):221–8.

    CAS  PubMed  Google Scholar 

  30. Ikeda S, Kotake Y. Urinary excretion of xanthurenic acid and zinc in diabetes: (3). Occurrence of xanthurenic acid-Zn2+ complex in urine of diabetic patients and of experimentally-diabetic rats. Ital J Biochem. 1986;35(4):232–41.

    CAS  PubMed  Google Scholar 

  31. Gu H, Chen H, Pan Z, Jackson AU, Talaty N, Xi B, et al. Monitoring diet effects via biofluids and their implications for metabolomics studies. Anal Chem. 2007;79(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  32. Masiello P, Balestreri E, Bacciola D, et al. Influence of experimental diabetes on brain levels of monoamine neurotransmitters and their precursor amino acids during tryptophan loading. Acta Diabetol Lat. 1987;24:43–50.

    Article  CAS  PubMed  Google Scholar 

  33. Koopmans SJ, Ruis M, Dekker R, et al. Surplus dietary tryptophan inhibits stress hormone kinetics and induces insulin resistance in pigs. Physiol Behav. 2009;98:402–10.

    Article  CAS  PubMed  Google Scholar 

  34. Manusadzhian VG, Kniazev A, Vakhrusheva LL. Mass spectrometric identification of xanthurenic acid in pre-diabetes. Vopr Med Khim. 1974;20(1):95–7.

    CAS  PubMed  Google Scholar 

  35. Munipally PK, Agraharm SG, Valavala VK, et al. Evaluation of indoleamine 2,3-dioxygenase expression and kynurenine pathway metabolites levels in serum samples of diabetic retinopathy patients. Arch Physiol Biochem. 2011;117:254–8.

    Article  CAS  PubMed  Google Scholar 

  36. Koenig P, Nagl C, Neurauter G, Schennach H, Brandacher G, Fuchs D. Enhanced degradation of tryptophan in patients on hemodialysis. Clin Nephrol. 2010;74(6):465–70.

    Article  CAS  PubMed  Google Scholar 

  37. Calandra P. Identification of tryptophan metabolites in the healthy epidermis of diabetics. Acta Diabetol Lat. 1977;14(1–2):26–37.

    Article  CAS  PubMed  Google Scholar 

  38. Shen J, Lai CQ, Mattei J, Ordovas JM, Tucker KL. Association of vitamin B-6 status with inflammation, oxidative stress, and chronic inflammatory conditions: the Boston Puerto Rican Health Study. Am J Clin Nutr. 2010;91(2):337–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Campbell BM, Charych E, Lee AW, Möller T. Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci. 2014;8:12. doi:10.3389/ fnins.2014.00012.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Cazzulo CL, Mangoni A, Mascherpa G. Tryptophan metabolism in affective psychoses. Br J Psychiatry. 1974;112:157–62.

    Article  Google Scholar 

  41. Bonora E, Kiechl S, Willeit J, Oberhollenzer F, Egger G, Targher G, Alberiche M, et al. Prevalence of insulin resistance in metabolic disorders. The Bruneck Study. Diabetes. 1998;47:1643–9.

    Article  CAS  PubMed  Google Scholar 

  42. Romero-Gomez M. Insulin resistance and hepatitis C. World J Gastroenterol. 2006;12(44):7075–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Shlomai M, Mouler E, Rechtma G, et al. The metabolic regulator PGC-1a links hepatitis C virus infection to hepatic insulin resistance. J Hepatol. 2012;57(3):867–73.

    Article  CAS  PubMed  Google Scholar 

  44. Lecube C, Hernández J, Genescà J, et al. Proinflammatory cytokines, insulin resistance, and insulin secretion in chronic hepatitis C patients: a case-control study. Diabetes Care. 2006;29(5):1096–101.

    Article  CAS  PubMed  Google Scholar 

  45. Larrea E, Riezu-Boj JI, Gil-Guerrero L, et al. Upregulation of indoleamine 2,3-dioxygenase in hepatitis C virus infection. J Virol. 2007;81(7):3662–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Higashitani K, Kanto T, Kuroda S, et al. Association of enhanced activity of indoleamine 2, 3-dioxygenase in dendritic cells with the induction of regulatory T cells in chronic hepatitis C infection. J Gastroenterol. 2013;48(5):660–70.

    Article  CAS  PubMed  Google Scholar 

  47. Oxenkrug GF, Turski WA, Zgrajka W, Weinstock JV, Summergrad P. Tryptophan-kynurenine metabolism and insulin resistance in hepatitis C patients. Hepat Res Treat 2013;2013:4p. Article ID 149247.

    Google Scholar 

  48. Fuchs D, Avanzas P, Arroyo-Espliguero R, Jenny M, Consuegra-Sanchez L, Kaski JC. The role of neopterin in atherogenesis and cardiovascular risk assessment. Curr Med Chem. 2009;16(35):4644–53.

    Article  CAS  PubMed  Google Scholar 

  49. Fuchs D, Norkrans G, Wejstal R, Reibnegger G, Weiss G, Weiland O, et al. Changes of serum neopterin, beta 2-microglobulin and interferon-gamma in patients with chronic hepatitis C treated with interferon-alpha 2b. Eur J Med. 1992;1(4):196–200.

    CAS  PubMed  Google Scholar 

  50. Midttun O, Ulvik A, Ringdal-Pedersen E, Ebbing M, Bleie O, Schartum-Hansen H, et al. Low plasma vitamin B-6 status affects metabolism through the kynurenine pathway in cardiovascular patients with systemic inflammation. J Nutr. 2011;141(4):611–17.

    Article  CAS  PubMed  Google Scholar 

  51. Spencer ME, Jain A, Matteini A, Beamer BA, Wang NY, Leng SX, et al. Serum levels of the immune activation marker neopterin change with age and gender and are modified by race, BMI, and percentage of body fat. J Gerontol A Biol Sci Med Sci. 2010;65(8):858–65.

    Article  PubMed  Google Scholar 

  52. Oxenkrug G, Tucker KL, Requintina P, Summergrad P. Neopterin, a marker of interferon-gamma-inducible inflammation, correlates with pyridoxal-5’-phosphate, waist circumference, HDL-cholesterol, insulin resistance and mortality risk in adult Boston community dwellers of Puerto Rican origin. Am J Neuroprot Neuroregen. 2011;3(1):48–52.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Theofylaktopoulou D, Middtun O, Ulvik A, et al. A community-based study of determinants of circulating markers of cellular immune activation and kynurenines: the Hordaland Health Study. Clin Exp Immunol. 2013;173:121–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Malina HZ, Richter C, Mehl M, Hess OM. Pathological apoptosis by xanthurenic acid, a tryptophan metabolite: activation of cell caspases but not cytoskeleton breakdown. BMC Physiol. 2001;1:7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Meyramov G, Korchin V, Kocheryzkina N. Diabetogenic activity of xanturenic acid determined by its chelating properties? Transplant Proc. 1998;30(6):2682–4.

    Article  CAS  PubMed  Google Scholar 

  56. Noto Y, Okamoto H. Inhibition by kynurenine metabolites of proinsulin synthesis in isolated pancreatic islets. Acta Diabetol Lat. 1978;15(5–6):273–82.

    Article  CAS  PubMed  Google Scholar 

  57. Rogers KS, Evangelista SJ. 3-Hydroxykynurenine, 3-hydroxyanthranilic acid, and o-aminophenol inhibit leucine-stimulated insulin release from rat pancreatic islets. Proc Soc Exp Biol Med. 1985;178(2):275–8.

    Article  CAS  PubMed  Google Scholar 

  58. Shibata Y, Ohta T, Nakatsuka M, Ishizu H, Matsuda Y, Shindo T, et al. Taurine and kynureninase. Adv Exp Med Biol. 1996;403:55–8.

    Article  CAS  PubMed  Google Scholar 

  59. Takeuchi F, Tsubouchi R, Shibata Y. Effect of tryptophan metabolites on the activities of rat liver pyridoxal kinase and pyridoxamine 5-phosphate oxidase in vitro. Biochem J. 1985;227(2):537–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Taylor MW, Feng GS. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 1991;5(11):2516–22.

    CAS  PubMed  Google Scholar 

  61. Liu D, Pavlovic D, Chen MC, Flodstrom M, Sandler S, Eizirik DL. Cytokines induce apoptosis in beta-cells isolated from mice lacking the inducible isoform of nitric oxide synthase (iNOS-/-). Diabetes. 2000;49(7):1116–22.

    Article  CAS  PubMed  Google Scholar 

  62. Sarkar SA, Wong R, Hackl SI, Moua O, Gill RG, Wiseman A, et al. Induction of indoleamine 2,3-dioxygenase by interferon-gamma in human islets. Diabetes. 2007;56(1):72–9.

    Article  CAS  PubMed  Google Scholar 

  63. Eizirik DL, Sandler S, Welsh N, Cetkovic-Cvrlje M, Nieman A, Geller DA, et al. Cytokines suppress human islet function irrespective of their effects on nitric oxide generation. J Clin Invest. 1994;93(5):1968–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Li Z, Geng YN, Jiang JD, Kong WJ. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. Evid Based Complement Alternat Med. 2014;2014:289264.

    Google Scholar 

  65. Cukras CA, Petrou P, Chew EY, Meyerle CB, Wong WT. Oral minocycline for the treatment of diabetic macular edema (DME): results of a phase I/II clinical study. Invest Ophthalmol Vis Sci. 2012;53(7):3865–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Yu CJ, Zheng MF, Henry CJ, Huang Y, Wynne A, Hanke M, et al. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation. 2008;5:15.

    Article  Google Scholar 

  67. Yu CJ, Zheng MF, Kuang CX, Huang WD, Yang Q. Oren-gedoku-to and its constituents with therapeutic potential in Alzheimer’s disease inhibit indoleamine 2,3-dioxygenase activity in vitro. J Alzheimers Dis. 2010;22(1):257–66.

    CAS  PubMed  Google Scholar 

  68. Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, et al. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation. 2008;5:15.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

G. F. Oxenkrug is recipient of NIMH099517 and NIMH104810 grants.

Conflict of Interest and Disclosure

Author reports no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory F. Oxenkrug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oxenkrug, G.F. (2015). Role of Kynurenine Pathway in Insulin Resistance: Toward Kynurenine Hypothesis of Insulin Resistance and Diabetes. In: Mittal, S. (eds) Targeting the Broadly Pathogenic Kynurenine Pathway. Springer, Cham. https://doi.org/10.1007/978-3-319-11870-3_13

Download citation

Publish with us

Policies and ethics