Skip to main content

Role of Kynurenine Pathway in Cardiovascular Diseases

  • Chapter
Targeting the Broadly Pathogenic Kynurenine Pathway

Abstract

Atherosclerosis (AS) is a major pathologic sequel of obesity. It causes cardiovascular disease (CVD), the most common contributor to death in the Western world. A systemic chronic low-grade immune-mediated inflammation (scLGI) is substantially involved in AS and CVD. Pro-inflammatory cytokines released during cellular immunity play a major role, with the Th1-type cytokine interferon-gamma (IFN-γ) being a key mediator. Among other effects, IFN-γ activates the enzyme indoleamine 2,3-dioxygenase (IDO) in monocyte-derived macrophages, dendritic, and other cells, which ultimately decreases serum levels of the essential amino acid tryptophan (TRP). Hence, patients with CVD show increased serum kynurenine to tryptophan concentrations (KYN/TRP), a result of an increased TRP degradation. Importantly, a strong increased KYN/TRP is associated with a higher likelihood of fatal cardiovascular outcomes. Moreover, an increased production of the pro-inflammatory adipokine leptin, in combination with IFN-γ and interleukin-6 (IL-6), represents a central link between obesity, AS, and CVD. Leptin has also been shown to be involved in a Th1-weighted T cell polarization.

Tryptophan is not only an important source for protein production but also counts for the generation of the neurotransmitter 5-hydroxytryptamine (serotonin) by the tetrahydrobiopterin-dependent TRP 5-hydroxylase. As with duration of scLGI, the availability of free serum TRP decreases, and brain serotonergic functions will be affected. The accumulation of neurotoxic KYN metabolites such as quinolinic acid, via NMDA glutamatergic stimulation, was also associated with the development of depression. Notably, depression had been brought into connection with CVD endpoints. Nevertheless, a secondary loop connecting excess adipose tissue with cardiovascular morbidity and mortality via scLGI appears to be more reliable in this context than a direct causal interaction.

Accelerated catabolism of TRP is also involved in the pathogenesis of the anemia of scLGI. The pro-inflammatory cytokine IFN-γ suppresses growth and differentiation of erythroid progenitor cells, and the depletion of TRP limits protein synthesis. Hence, also hemoglobin production is decreased which reduces the oxygen supply. This constellation contributes to a worsening of ischemic vascular disease. Moreover, the influence of KYN and kynurenic acid on the complex processes involved in the destabilization of vascular atherosclerotic remains to be more elucidated.

In summary, within this chapter we show the impact of TRP breakdown pathways, and the related complex mechanisms on the prognosis and individual course of CVD. The analysis of TRP, KYN concentrations, and calculation of the KYN/TRYP ratio may contribute to a better understanding of the interplay between immune-mediated inflammation, metabolic syndrome, mood disturbances, anemia, and destabilization of atherosclerotic plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AS:

Atherosclerosis

CVD:

Cardiovascular diseases

GTP-CH1:

Guanosine triphosphate cyclohydrolase-1

HDL-C:

High-density lipoprotein cholesterol

IDO:

Indoleamine 2,3-dioxygenase

iNOS:

Inducible nitric oxide synthase

IFN-γ:

Interferon-γ

KYN:

Kynurenine

LDL-C:

Low-density lipoprotein cholesterol

MetS:

Metabolic syndrome

MI:

Myocardial infarction

NO:

Nitric oxide

ROS:

Reactive oxygen species

T5H:

Tryptophan 5-hydroxylase

TDO:

Tryptophan 2,3-dioxygenase

TNF-α:

Tumor necrosis factor-α

TRP:

Tryptophan

References

  1. Schrocksnadel K, Wirleitner B, Winkler C, Fuchs D. Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta. 2006;364(1–2):82–90. doi:10.1016/j.cca.2005.06.013.

    Article  PubMed  Google Scholar 

  2. Yoshida R, Imanishi J, Oku T, Kishida T, Hayaishi O. Induction of pulmonary indoleamine 2,3-dioxygenase by interferon. Proc Natl Acad Sci U S A. 1981;78(1):129–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Werner ER, Bitterlich G, Fuchs D, Hausen A, Reibnegger G, Szabo G, et al. Human macrophages degrade tryptophan upon induction by interferon-gamma. Life Sci. 1987;41(3):273–80.

    Article  CAS  PubMed  Google Scholar 

  4. Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol. 2000;164(7):3596–9.

    Article  CAS  PubMed  Google Scholar 

  5. Taylor MW, Feng GS. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 1991;5(11):2516–22.

    CAS  PubMed  Google Scholar 

  6. Byrne GI, Lehmann LK, Kirschbaum JG, Borden EC, Lee CM, Brown RR. Induction of tryptophan degradation in vitro and in vivo: a gamma-interferon-stimulated activity. J Interferon Res. 1986;6(4):389–96.

    Article  CAS  PubMed  Google Scholar 

  7. Schroecksnadel K, Frick B, Winkler C, Fuchs D. Crucial role of interferon-gamma and stimulated macrophages in cardiovascular disease. Curr Vasc Pharmacol. 2006;4(3):205–13.

    Article  CAS  PubMed  Google Scholar 

  8. Wirleitner B, Rudzite V, Neurauter G, Murr C, Kalnins U, Erglis A, et al. Immune activation and degradation of tryptophan in coronary heart disease. Eur J Clin Invest. 2003;33(7):550–4.

    Article  CAS  PubMed  Google Scholar 

  9. Fuchs D, Moller AA, Reibnegger G, Stockle E, Werner ER, Wachter H. Decreased serum tryptophan in patients with HIV-1 infection correlates with increased serum neopterin and with neurologic/psychiatric symptoms. J Acquir Immune Defic Syndr. 1990;3(9):873–6.

    CAS  PubMed  Google Scholar 

  10. Widner B, Werner ER, Schennach H, Wachter H, Fuchs D. Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem. 1997;43(12):2424–6.

    CAS  PubMed  Google Scholar 

  11. Murr C, Gerlach D, Widner B, Dierich MP, Fuchs D. Neopterin production and tryptophan degradation in humans infected by Streptococcus pyogenes. Med Microbiol Immunol. 2001;189(3):161–3.

    Article  CAS  PubMed  Google Scholar 

  12. Pedersen ER, Midttun O, Ueland PM, Schartum-Hansen H, Seifert R, Igland J, et al. Systemic markers of interferon-gamma-mediated immune activation and long-term prognosis in patients with stable coronary artery disease. Arterioscler Thromb Vasc Biol. 2011;31(3):698–704. doi:10.1161/ATVBAHA.110.219329.

    Article  CAS  PubMed  Google Scholar 

  13. Brouns R, Verkerk R, Aerts T, De Surgeloose D, Wauters A, Scharpe S, et al. The role of tryptophan catabolism along the kynurenine pathway in acute ischemic stroke. Neurochem Res. 2010;35(9):1315–22. doi:10.1007/s11064-010-0187-2.

    Article  CAS  PubMed  Google Scholar 

  14. Mangge H, Summers KL, Meinitzer A, Zelzer S, Almer G, Prassl R, et al. Obesity-related dysregulation of the tryptophan-kynurenine metabolism: role of age and parameters of the metabolic syndrome. Obesity (Silver Spring). 2013. doi:10.1002/oby.20491.

  15. Wang Y, Liu H, McKenzie G, Witting PK, Stasch JP, Hahn M, et al. Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat Med. 2010;16(3):279–85. doi:10.1038/nm.2092.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Darcy CJ, Davis JS, Woodberry T, McNeil YR, Stephens DP, Yeo TW, et al. An observational cohort study of the kynurenine to tryptophan ratio in sepsis: association with impaired immune and microvascular function. PLoS One. 2011;6(6), e21185. doi:10.1371/journal.pone.0021185.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gold AB, Herrmann N, Swardfager W, Black SE, Aviv RI, Tennen G, et al. The relationship between indoleamine 2,3-dioxygenase activity and post-stroke cognitive impairment. J Neuroinflammation. 2011;8:17. doi:10.1186/1742-2094-8-17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Hofmann F. Ido brings down the pressure in systemic inflammation. Nat Med. 2010;16(3):265–7. doi:10.1038/nm0310-265.

    Article  CAS  PubMed  Google Scholar 

  19. Myint AM, Bondy B, Baghai TC, Eser D, Nothdurfter C, Schule C, et al. Tryptophan metabolism and immunogenetics in major depression: a role for interferon-gamma gene. Brain Behav Immun. 2013;31:128–33. doi:10.1016/j.bbi.2013.04.003.

    Article  CAS  PubMed  Google Scholar 

  20. Myint AM, Kim YK. Network beyond IDO in psychiatric disorders: revisiting neurodegeneration hypothesis. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:304–13. doi:10.1016/j.pnpbp.2013.08.008.

    Article  CAS  PubMed  Google Scholar 

  21. Rosenblat JD, Cha DS, Mansur RB, McIntyre RS. Inflamed moods: a review of the interactions between inflammation and mood disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2014. doi:10.1016/j.pnpbp.2014.01.013.

    PubMed  Google Scholar 

  22. Reininghaus EZ, McIntyre RS, Reininghaus B, Geisler S, Bengesser SA, Lackner N, et al. Tryptophan breakdown is increased in euthymic overweight individuals with bipolar disorder: a preliminary report. Bipolar Disord. 2013. doi:10.1111/bdi.12166.

    PubMed  Google Scholar 

  23. Breunis MN, Kupka RW, Nolen WA, Suppes T, Denicoff KD, Leverich GS, et al. High numbers of circulating activated T cells and raised levels of serum IL-2 receptor in bipolar disorder. Biol Psychiatry. 2003;53(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  24. Myint AM. Kynurenines: from the perspective of major psychiatric disorders. FEBS J. 2012;279(8):1375–85. doi:10.1111/j.1742-4658.2012.08551.x.

    Article  CAS  PubMed  Google Scholar 

  25. Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev. 2011;35(3):804–17. doi:10.1016/j.neubiorev.2010.10.001.

    Article  CAS  PubMed  Google Scholar 

  26. Wirleitner B, Neurauter G, Schrocksnadel K, Frick B, Fuchs D. Interferon-gamma-induced conversion of tryptophan: immunologic and neuropsychiatric aspects. Curr Med Chem. 2003;10(16):1581–91.

    Article  CAS  PubMed  Google Scholar 

  27. Reiter RJ. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev. 1991;12(2):151–80.

    Article  CAS  PubMed  Google Scholar 

  28. Sakotnik A, Liebmann PM, Stoschitzky K, Lercher P, Schauenstein K, Klein W, et al. Decreased melatonin synthesis in patients with coronary artery disease. Eur Heart J. 1999;20(18):1314–17. doi:10.1053/euhj.1999.1527.

    Article  CAS  PubMed  Google Scholar 

  29. Altun A, Yaprak M, Aktoz M, Vardar A, Betul UA, Ozbay G. Impaired nocturnal synthesis of melatonin in patients with cardiac syndrome X. Neurosci Lett. 2002;327(2):143–5.

    Article  CAS  PubMed  Google Scholar 

  30. Yaprak M, Altun A, Vardar A, Aktoz M, Ciftci S, Ozbay G. Decreased nocturnal synthesis of melatonin in patients with coronary artery disease. Int J Cardiol. 2003;89(1):103–7.

    Article  PubMed  Google Scholar 

  31. Weissbluth L, Weissbluth M. Sudden infant death syndrome: a genetically determined impaired maturation of the photoneuroendocrine system. A unifying hypothesis. J Theor Biol. 1994;167(1):13–25. doi:10.1006/jtbi.1994.1046.

    Article  CAS  PubMed  Google Scholar 

  32. Doi M, Takahashi Y, Komatsu R, Yamazaki F, Yamada H, Haraguchi S, et al. Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat Med. 2010;16(1):67–74. doi:10.1038/nm.2061.

    Article  CAS  PubMed  Google Scholar 

  33. Dominguez-Rodriguez A, Abreu-Gonzalez P, Sanchez-Sanchez JJ, Kaski JC, Reiter RJ. Melatonin and circadian biology in human cardiovascular disease. J Pineal Res. 2010;49(1):14–22. doi:10.1111/j.1600-079X.2010.00773.x.

    CAS  PubMed  Google Scholar 

  34. Kozirog M, Poliwczak AR, Duchnowicz P, Koter-Michalak M, Sikora J, Broncel M. Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome. J Pineal Res. 2011;50(3):261–6. doi:10.1111/j.1600-079X.2010.00835.x.

    Article  CAS  PubMed  Google Scholar 

  35. Muller-Wieland D, Behnke B, Koopmann K, Krone W. Melatonin inhibits LDL receptor activity and cholesterol synthesis in freshly isolated human mononuclear leukocytes. Biochem Biophys Res Commun. 1994;203(1):416–21.

    Article  CAS  PubMed  Google Scholar 

  36. Kelly MR, Loo G. Melatonin inhibits oxidative modification of human low-density lipoprotein. J Pineal Res. 1997;22(4):203–9.

    Article  CAS  PubMed  Google Scholar 

  37. Dominguez-Rodriguez A, Abreu-Gonzalez P, Garcia-Gonzalez M, Ferrer-Hita J, Vargas M, Reiter RJ. Elevated levels of oxidized low-density lipoprotein and impaired nocturnal synthesis of melatonin in patients with myocardial infarction. Atherosclerosis. 2005;180(1):101–5. doi:10.1016/j.atherosclerosis.2004.11.003.

    Article  CAS  PubMed  Google Scholar 

  38. Kawashima K, Miwa Y, Fujimoto K, Oohata H, Nishino H, Koike H. Antihypertensive action of melatonin in the spontaneously hypertensive rat. Clin Exp Hypertens A. 1987;9(7):1121–31.

    CAS  PubMed  Google Scholar 

  39. Cagnacci A, Soldani R, Yen SS. Melatonin enhances cortisol levels in aged women: reversible by estrogens. J Pineal Res. 1997;22(2):81–5.

    Article  CAS  PubMed  Google Scholar 

  40. Fuchs D, Hausen A, Reibnegger G, Werner ER, Werner-Felmayer G, Dierich MP, et al. Immune activation and the anaemia associated with chronic inflammatory disorders. Eur J Haematol. 1991;46(2):65–70.

    Article  CAS  PubMed  Google Scholar 

  41. Weiss G, Schroecksnadel K, Mattle V, Winkler C, Konwalinka G, Fuchs D. Possible role of cytokine-induced tryptophan degradation in anaemia of inflammation. Eur J Haematol. 2004;72(2):130–4. doi:10.1046/j.0902-4441.2003.00197.x.

    Article  CAS  PubMed  Google Scholar 

  42. Leshem-Rubinow E, Steinvil A, Rogowski O, Zeltser D, Berliner S, Weitzman D, et al. Hemoglobin nonrecovery following acute myocardial infarction is a biomarker of poor outcome: a retrospective database study. Int J Cardiol. 2013. doi:10.1016/j.ijcard.2013.09.004.

    PubMed  Google Scholar 

  43. Capuron L, Schroecksnadel S, Feart C, Aubert A, Higueret D, Barberger-Gateau P, et al. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol Psychiatry. 2011;70(2):175–82. doi:10.1016/j.biopsych.2010.12.006.

    Article  CAS  PubMed  Google Scholar 

  44. Pertovaara M, Raitala A, Lehtimaki T, Karhunen PJ, Oja SS, Jylha M, et al. Indoleamine 2,3-dioxygenase activity in nonagenarians is markedly increased and predicts mortality. Mech Ageing Dev. 2006;127(5):497–9. doi:10.1016/j.mad.2006.01.020.

    Article  CAS  PubMed  Google Scholar 

  45. Solichova D, Melichar B, Blaha V, Klejna M, Vavrova J, Palicka V, et al. Biochemical profile and survival in nonagenarians. Clin Biochem. 2001;34(7):563–9.

    Article  CAS  PubMed  Google Scholar 

  46. Palmer DB. The effect of age on thymic function. Front Immunol. 2013;4:316. doi:10.3389/fimmu.2013.00316.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Pertovaara M, Raitala A, Juonala M, Lehtimaki T, Huhtala H, Oja SS, et al. Indoleamine 2,3-dioxygenase enzyme activity correlates with risk factors for atherosclerosis: the cardiovascular risk in Young Finns Study. Clin Exp Immunol. 2007;148(1):106–11. doi:10.1111/j.1365-2249.2007.03325.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281(5380):1191–3.

    Article  CAS  PubMed  Google Scholar 

  49. Neurauter G, Wirleitner B, Laich A, Schennach H, Weiss G, Fuchs D. Atorvastatin suppresses interferon-gamma-induced neopterin formation and tryptophan degradation in human peripheral blood mononuclear cells and in monocytic cell lines. Clin Exp Immunol. 2003;131(2):264–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Schroecksnadel S, Sucher R, Kurz K, Fuchs D, Brandacher G. Influence of immunosuppressive agents on tryptophan degradation and neopterin production in human peripheral blood mononuclear cells. Transpl Immunol. 2011;25(2–3):119–23. doi:10.1016/j.trim.2011.06.005.

    Article  CAS  PubMed  Google Scholar 

  51. Jenny M, Klieber M, Zaknun D, Schroecksnadel S, Kurz K, Ledochowski M, et al. In vitro testing for anti-inflammatory properties of compounds employing peripheral blood mononuclear cells freshly isolated from healthy donors. Inflamm Res. 2011;60(2):127–35. doi:10.1007/s00011-010-0244-y.

    Article  CAS  PubMed  Google Scholar 

  52. Tengattini S, Reiter RJ, Tan DX, Terron MP, Rodella LF, Rezzani R. Cardiovascular diseases: protective effects of melatonin. J Pineal Res. 2008;44(1):16–25. doi:10.1111/j.1600-079X.2007.00518.x.

    CAS  PubMed  Google Scholar 

  53. Ait-Oufella H, Taleb S, Mallat Z, Tedgui A. Cytokine network and T cell immunity in atherosclerosis. Semin Immunopathol. 2009;31(1):23–33. doi:10.1007/s00281-009-0143-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Mangge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mangge, H., Reininghaus, E., Fuchs, D. (2015). Role of Kynurenine Pathway in Cardiovascular Diseases. In: Mittal, S. (eds) Targeting the Broadly Pathogenic Kynurenine Pathway. Springer, Cham. https://doi.org/10.1007/978-3-319-11870-3_10

Download citation

Publish with us

Policies and ethics