Skip to main content

Perfect Formulations

  • Chapter
  • First Online:
Integer Programming

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 271))

  • 14k Accesses

Abstract

A perfect formulation of a set \(S \subseteq \mathbb{R}^{n}\) is a linear system of inequalities Ax ≤ b such that \(\mathrm{conv}(S) =\{ x \in \mathbb{R}^{n}\,:\, Ax \leq b\}\). For example, Proposition 1.5 gives a perfect formulation of a 2-variable mixed integer linear set. When a perfect formulation is available for a mixed integer linear set, the corresponding integer program can be solved as a linear program. In this chapter, we present several classes of integer programming problems for which a perfect formulation is known. For pure integer linear sets, a classical case is when the constraint matrix is totally unimodular. Important combinatorial problems on directed or undirected graphs such as network flows and matchings in bipartite graphs have a totally unimodular constraint matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. A. Atamtürk, Strong formulations of robust mixed 0–1 programming. Math. Program. 108, 235–250 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows (Prentice Hall, New Jersey, 1993)

    MATH  Google Scholar 

  3. E. Balas, Disjunctive programming: properties of the convex hull of feasible points, GSIA Management Science Research Report MSRR 348, Carnegie Mellon University (1974); Published as invited paper in Discrete Appl. Math. 89, 1–44 (1998)

    Google Scholar 

  4. E. Balas, Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebr. Discrete Methods 6, 466–486 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Balas, W.R. Pulleyblank, The perfectly matchable subgraph polytope of an arbitrary graph. Combinatorica 9, 321–337 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. I. Barany, T.J. Van Roy, L.A. Wolsey, Uncapacitated lot-sizing: the convex hull of solutions. Math. Program. 22, 32–43 (1984)

    MATH  Google Scholar 

  7. C. Berge, Two theorems in graph theory. Proc. Natl. Acad. Sci. USA 43, 842–844 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  8. R.D. Carr, G. Konjevod, G. Little, V. Natarajan, O. Parekh, Compacting cuts: new linear formulation for minimum cut. ACM Trans. Algorithms 5, 27:1–27:6 (2009)

    Google Scholar 

  9. M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, K. Vusković, Recognizing Berge graphs. Combinatorica 25, 143–186 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem. Ann. Math. 164, 51–229 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Conforti, G. Cornuéjols, G. Zambelli, Extended formulations in combinatorial optimization. 4OR 8, 1–48 (2010)

    Google Scholar 

  12. M. Conforti, M. Di Summa, F. Eisenbrand, L.A. Wolsey, Network formulations of mixed-integer programs. Math. Oper. Res. 34, 194–209 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Conforti, L.A. Wolsey, Compact formulations as unions of polyhedra. Math. Program. 114, 277–289 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Schrijver, Combinatorial Optimization (Wiley, New York, 1998)

    MATH  Google Scholar 

  15. W.J. Cook, J. Fonlupt, A. Schrijver, An integer analogue of Carathéodory’s theorem. J. Combin. Theory B 40, 63–70 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Cornuéjols, Combinatorial Optimization: Packing and Covering. SIAM Monograph, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 74 (2001)

    Google Scholar 

  17. G. Dantzig. R. Fulkerson, S. Johnson, Solution of a large-scale traveling-salesman problem. Oper. Res. 2, 393–410 (1954)

    Google Scholar 

  18. R. de Wolf, Nondeterministic quantum query and communication complexities. SIAM J. Comput. 32, 681–699 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. E.A. Dinic, Algorithm for solution of a problem of maximum flow in networks with power estimation. Soviet Math. Dokl. 11, 1277–1280 (1970)

    Google Scholar 

  20. J. Edmonds, Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices. J. Res. Natl. Bur. Stand. B 69, 125–130 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Edmonds, Submodular functions, matroids, and certain polyhedra, in Combinatorial Structures and Their Applications, ed. by R. Guy, H. Hanani, N. Sauer, J. Schönheim. (Gordon and Breach, New York, 1970), pp. 69–87

    Google Scholar 

  23. J. Edmonds, R. Giles, A min-max relation for submodular functions on graphs. Ann. Discrete Math. 1, 185–204 (1977)

    Article  MathSciNet  Google Scholar 

  24. J. Edmonds, R.M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19, 248–264 (1972)

    Article  MATH  Google Scholar 

  25. S. Fiorini, S. Massar, S. Pokutta, H.R. Tiwary, R. de Wolf, Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds, in STOC 2012 (2012)

    Google Scholar 

  26. S. Fiorini, V. Kaibel, K. Pashkovich, D.O. Theis Combinatorial bounds on the nonnegative rank and extended formulations. Discrete Math. 313, 67–83 (2013)

    Google Scholar 

  27. L.R. Ford Jr., D.R. Fulkerson, Flows in Networks (Princeton University Press, Princeton, 1962)

    MATH  Google Scholar 

  28. A. Frank, Connections in combinatorial optimization, in Oxford Lecture Series in Mathematics and Its Applications, vol. 38 (Oxford University Press, Oxford, 2011)

    Google Scholar 

  29. D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra. Math. Program. 1, 168–194 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  30. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman and Co., New York, 1979)

    MATH  Google Scholar 

  31. A.M.H. Gerards, A short proof of Tutte’s characterization of totally unimodular matrices. Linear Algebra Appl. 114/115, 207–212 (1989)

    Google Scholar 

  32. A. Ghouila-Houri, Caractérisation des matrices totalement unimodulaires. Comptes Rendus Hebdomadaires des Scéances de l’Académie des Sciences (Paris) 254, 1192–1194 (1962)

    MATH  MathSciNet  Google Scholar 

  33. F.R. Giles, W.R. Pulleyblank, Total dual integrality and integer polyhedra. Linear Algebra Appl. 25, 191–196 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  34. M.X. Goemans, Smallest compact formulation for the permutahedron. Math. Program. Ser. A DOI 10.1007/s101007-014-0757-1 (2014)

    Google Scholar 

  35. J. Gouveia, P. Parrilo, R. Thomas, Lifts of convex sets and cone factorizations. Math. Oper. Res. 38, 248–264 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. O. Günlük, Y. Pochet, Mixing mixed-integer inequalities. Math. Program. 90, 429–458 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  37. I. Heller, C.B. Tompkins, An extension of a theorem of Dantzig’s, in Linear Inequalities and Related Systems, ed. by H.W. Kuhn, A.W. Tucker (Princeton University Press, Princeton, 1956), pp. 247–254

    Google Scholar 

  38. A.J. Hoffman, A generalization of max-flow min-cut. Math. Program. 6, 352–259 (1974)

    Article  MATH  Google Scholar 

  39. S. Iwata, L. Fleischer, S. Fujishige, A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions. J. ACM 48, 761–777 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. R.G. Jeroslow, Representability in mixed integer programming, I: characterization results. Discrete Appl. Math. 17, 223–243 (1987)

    MATH  MathSciNet  Google Scholar 

  41. R.G Jeroslow, On defining sets of vertices of the hypercube by linear inequalities. Discrete Math. 11, 119–124 (1975)

    Google Scholar 

  42. R.G Jeroslow, J.K. Lowe, Modelling with integer variables. Math. Program. Stud. 22, 167–184 (1984)

    Google Scholar 

  43. V. Kaibel, Extended formulations in combinatorial optimization. Optima 85, 2–7 (2011)

    Google Scholar 

  44. V. Kaibel, K. Pashkovich, Constructing extended formulations from reflection relations, in Proceedings of IPCO XV O. Günlük, ed. by G. Woeginger. Lecture Notes in Computer Science, vol. 6655 (Springer, Berlin, 2011), pp. 287–300

    Google Scholar 

  45. V. Kaibel, K. Pashkovich, D.O. Theis, Symmetry matters for sizes of extended formulations. SIAM J. Discrete Math. 26(3), 1361–1382 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  46. V. Kaibel, S. Weltge, A short proof that the extension complexity of the correlation polytope grows exponentially. arXiv:1307.3543 (2013)

    Google Scholar 

  47. D.R. Karger, Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm, in Proceedings of SODA (1993), pp. 21–30

    Google Scholar 

  48. B. Korte, J. Vygen, Combinatorial Optimization: Theory and Algorithms (Springer, Berlin/Hidelberg, 2000)

    Book  Google Scholar 

  49. J.B. Kruskal Jr., On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7, 48–50 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  50. H.W. Kuhn, The Hungarian method for the assignment problem. Naval Res. Logistics Q. 2, 83–97 (1955)

    Article  Google Scholar 

  51. E. L. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Rinehart and Winston, New York, 1976)

    MATH  Google Scholar 

  52. L. Lovász, Normal hypergraphs and the perfect graph conjecture. Discrete Math. 2, 253–267 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  53. L. Lovász, M.D. Plummer, Matching Theory (Akadémiai Kiadó, Budapest, 1986) [Also: North Holland Mathematics Studies, vol. 121 (North Holland, Amsterdam)]

    MATH  Google Scholar 

  54. R.K. Martin, Generating alternative mixed integer programming models using variable definition. Oper. Res. 35, 820–831 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  55. R.K. Martin, Using separation algorithms to generate mixed integer model reformulations. Oper. Res. Lett. 10(3), 119–128 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  56. R.K. Martin, R.L. Rardin, B.A. Campbell, Polyhedral characterization of discrete dynamic programming. Oper. Res. 38, 127–138 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  57. R.R. Meyer, On the existence of optimal solutions to integer and mixed integer programming problems. Math. Program. 7, 223–235 (1974)

    Article  MATH  Google Scholar 

  58. C.E. Miller, A.W. Tucker, R.A. Zemlin, Integer programming formulation of traveling salesman problems. J. ACM 7, 326–329 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  59. H. Nagamochi, T. Ibaraki, Computing edge-connectivity in multiple and capacitated graphs. SIAM J. Discrete Math. 5, 54–66 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  60. J. Oxley, Matroid Theory (Oxford University Press, New York, 2011)

    Book  MATH  Google Scholar 

  61. J. Pap, Recognizing conic TDI systems is hard. Math. Program. 128, 43–48 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  62. J. Petersen, Die Theorie der regulären graphs. Acta Matematica 15, 193–220 (1891)

    Article  MATH  Google Scholar 

  63. Y. Pochet, L.A. Wolsey, Polyhedra for lot-sizing with Wagner–Whitin costs. Math. Program. 67, 297–324 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  64. C.H. Papadimitriou, M. Yannakakis, On recognizing integer polyhedra. Combinatorica 10, 107–109 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  65. A. Razborov, On the distributional complexity of disjointness. Theor. Comput. Sci. 106(2), 385–390 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  66. T. Rothvoß, Some 0/1 polytopes need exponential size extended formulations. Math. Program. A 142, 255–268 (2012)

    Article  Google Scholar 

  67. T. Rothvoß, The matching polytope has exponential extension complexity, in Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC 2014), (2014), pp. 263–272

    Google Scholar 

  68. A. Schrijver, On total dual integrality. Linear Algebra Appl. 38, 27–32 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  69. A. Schrijver, Theory of Linear and Integer Programming (Wiley, New York, 1986)

    MATH  Google Scholar 

  70. A. Schrijver, A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Combin. Theory Ser. B 80, 346–355 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  71. A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency (Springer, Berlin, 2003)

    Google Scholar 

  72. P.D. Seymour, Decomposition of regular matroids. J. Combin. Theory B 28, 305–359 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  73. M. Stoer, F. Wagner, A simple min-cut algorithm. J. ACM 44, 585–591 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  74. K. Truemper, Matroid Decomposition (Academic, Boston, 1992)

    MATH  Google Scholar 

  75. W.T. Tutte, A homotopy theorem for matroids I, II. Trans. Am. Math. Soc. 88, 905–917 (1958)

    MathSciNet  Google Scholar 

  76. M. Van Vyve, The continuous mixing polyhedron. Math. Oper. Res. 30, 441–452 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  77. F. Vanderbeck, L.A. Wolsey, Reformulation and decomposition of integer programs, in 50 Years of Integer Programming 1958–2008, ed. by M. Jünger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, L. Wolsey (Springer, New York, 2010), pp. 431–502

    Google Scholar 

  78. S. Vavasis, On the complexity of nonnegative matrix factorization. SIAM J. Optim. 20, 1364–1377 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  79. J.P. Vielma, Mixed integer linear programming formulation techniques to appear in SIAM Review (2014)

    Google Scholar 

  80. M. Yannakakis, Expressing combinatorial optimization problems by linear programs. J. Comput. Syst. Sci. 43, 441–466 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Conforti, M., Cornuéjols, G., Zambelli, G. (2014). Perfect Formulations. In: Integer Programming. Graduate Texts in Mathematics, vol 271. Springer, Cham. https://doi.org/10.1007/978-3-319-11008-0_4

Download citation

Publish with us

Policies and ethics