Skip to main content

The Mechanism of Pigmentation

  • Chapter
  • First Online:
Atlas of Pigmentary Disorders

Abstract

This opening chapter introduces the subject of pigmentation; covering practical approaches to pigmentary disorders, the pigmentary system, and how to measure skin color and pigmentation disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

PIGMENTARY DISORDERS: PRACTICAL APPROACH

  1. Passeron T, Mantoux F, Ortonne JP. Genetic disorders of pigmentation. Clin Dermatol. 2005;23: 56-67.

    Google Scholar 

  2. Nordlund JJ, Boissy RE, Hearing VJ, et al (Eds). The Pigmentary System: physiology and pathophysiology. Edinburgh: Blackwell Science. 2006;1-1200.

    Google Scholar 

THE PIGMENTARY SYSTEM

  1. Adameyko I, Lallemend F, Aquino JB, et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell. 2009;139:366-79.

    Google Scholar 

  2. Bertolotto C, Abbe P, Hemesath TJ, et al. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol. 1998;142:827-35.

    Google Scholar 

  3. Paratore C, Goerich DE, Suter U, Wegner M, Sommer L. Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development. 2001;128:3949-61.

    Google Scholar 

  4. Grabbe J, Welker P, Dippel E, Czarnetzki BM. Stem cell factor, a novel cutaneous growth factor for mast cells and melanocytes. Arch Dermatol Res. 1994;287:78-84.

    Google Scholar 

  5. Edery P, Attie T, Amiel J, et al. Mutation of the endothelin-3 gene in the Waardenburg–Hirschsprung disease (Shah–Waardenburg syndrome). Nat Genet 1996;12:442-4.

    Google Scholar 

  6. Read AP, Newton VE. Waardenburg syndrome. J Med Genet. 1997;34:656-65.

    Google Scholar 

  7. Spritz RA. Piebaldism, Waardenburg syndrome, and related disorders of melanocyte development. Semin Cutan Med Surg. 1997;16:15-23.

    Google Scholar 

  8. Pingault V, Bondurand N, Kuhlbrodt K, et al. SOX10 mutations in patients with Waardenburg–Hirschsprung disease. Nat Genet. 1998;18:171-3.

    Google Scholar 

  9. Watanabe A, Takeda K, Ploplis B, Tachibana M. Epistatic relationship between Waardenburg syndrome genes MITF and PAX3. Nat Genet. 1998;18:283-6.

    Google Scholar 

  10. McCallion AS, Chakravarti A. EDNRB/EDN3 and Hirschsprung disease type II. Pigment Cell Res. 2001;14:161-9.

    Google Scholar 

  11. Pingault V, Bondurand N, Lemort N, et al. A heterozygous endothelin 3 mutation in Waardenburg–Hirschsprung disease: is there a dosage effect of EDN3/EDNRB gene mutations on neurocristopathy phenotypes? J Med Genet. 2001;38:205-9.

    Google Scholar 

  12. Sanchez-Martin M, Rodriguez-Garcia A, Perez-Losada J, Sagrera A, Read AP, Sanchez-Garcia I. SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet. 2002;11:3231-6.

    Google Scholar 

  13. Wollnik B, Tukel T, Uyguner O, et al. Homozygous and heterozygous inheritance of PAX3 mutations causes different types of Waardenburg syndrome. Am J Med Genet A. 2003;122A:42-5.

    Google Scholar 

  14. Toyofuku K, Wada I, Spritz RA, Hearing VJ. The molecular basis of oculocutaneous albinism type 1 (OCA1): sorting failure and degradation of mutant tyrosinases results in a lack of pigmentation. Biochem J. 2001;355:259-69.

    Google Scholar 

  15. Toyofuku K, Wada I, Valencia JC, Kushimoto T, Ferrans VJ, Hearing VJ. Oculocutaneous albinism types 1 and 3 are ER retention diseases: mutation of tyrosinase or Tyrp1 can affect the processing of both mutant and wild-type proteins. FASEB J. 2001;15:2149-61.

    Google Scholar 

  16. Chen K, Manga P, Orlow SJ. Pink-eyed dilution protein controls the processing of tyrosinase. Mol Biol Cell. 2002;13:1953-64.

    Google Scholar 

  17. Toyofuku K, Valencia JC, Kushimoto T, et al. The etiology of oculocutaneous albinism (OCA) type II: the pink protein modulates the processing and transport of tyrosinase. Pigment Cell Res. 2002;15:217-24.

    Google Scholar 

  18. Costin GE, Valencia JC, Vieira WD, Lamoreux ML, Hearing VJ. Tyrosinase processing and intracellular trafficking is disrupted in mouse primary melanocytes carrying the underwhite (uw) mutation. A model for oculocutaneous albinism (OCA) type 4. J Cell Sci. 2003;116:3203-12.

    Google Scholar 

  19. Tchernev VT, Mansfield TA, Giot L, et al. The Chediak–Higashi protein interacts with SNARE complex and signal transduction proteins. Mol Med. 2002;8:56-64.

    Google Scholar 

  20. Dell’Angelica EC, Shotelersuk V, Aguilar RC, Gahl WA, Bonifacino JS. Altered trafficking of lysosomal proteins in Hermansky–Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol Cell. 1999;3:11-21.

    Google Scholar 

  21. Suzuki T, Li W, Zhang Q, et al. The gene mutated in cocoa mice, carrying a defect of organelle biogenesis, is a homologue of the human Hermansky–Pudlak syndrome-3 gene. Genomics. 2001;78:30-7.

    Google Scholar 

  22. Sugita M, Cao X, Watts GF, Rogers RA, Bonifacino JS, Brenner MB. Failure of trafficking and antigen presentation by CD1 in AP-3-deficient cells. Immunity. 2002;16:697-706.

    Google Scholar 

  23. Li W, Zhang Q, Oiso N, et al. Hermansky–Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nat Genet. 2003;35:84-9.

    Google Scholar 

  24. Martina JA, Moriyama K, Bonifacino JS. BLOC-3, a protein complex containing the Hermansky–Pudlak syndrome gene products HPS1 and HPS4. J Biol Chem. 2003;278:29376-84.

    Google Scholar 

  25. Zhang Q, Zhao B, Li W, et al. Ru2 and Ru encode mouse orthologs of the genes mutated in human Hermansky–Pudlak syndrome types 5 and 6. Nat Genet. 2003;33:145-53.

    Google Scholar 

  26. Morgan NV, Pasha S, Johnson CA, et al. A germline mutation in BLOC1S3/reduced pigmentation causes a novelvariant of Hermansky–Pudlak syndrome (HPS8). Am J Hum Genet. 2006;78:160-6.

    Google Scholar 

  27. Rogers SL, Karcher RL, Roland JT, Minin AA, Steffen W, Gelfand VI. Regulation of melanosome movement in the cell cycle by reversible association with myosin V. J Cell Biol. 1999;146:1265-76.

    Google Scholar 

  28. Bahadoran P, Aberdam E, Mantoux F, et al. Rab27a: a key to melanosome transport in human melanocytes. J Cell Biol. 2001;152:843-50.

    Google Scholar 

  29. Menasche G, Ho CH, Sanal O, et al. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J Clin Invest. 2003;112:450-6.

    Google Scholar 

  30. Weiner L, Han R, Scicchitano BM, et al. Dedicated epithelial recipient cells determine pigmentation patterns. Cell. 2007;130:932-42.

    Google Scholar 

  31. Scott G, Leopardi S, Printup S, Madden BC. Filopodia are conduits for melanosome transfer to keratinocytes. J Cell Sci. 2002;115:1441-51.

    Google Scholar 

  32. Passeron T, Valencia JC, Bertolotto C, et al. SOX9 is a key player in ultraviolet B-induced melanocyte differentiation and pigmentation. Proc Natl Acad Sci USA. 2007;104:13984-9.

    Google Scholar 

  33. Mitra D, Luo X, Morgan A, et al. An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature. 2012;491:449-53.

    Google Scholar 

  34. Noonan FP, Zaidi MR, Wolnicka-Glubisz A, et al. Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nat Commun. 2012;3:884.

    Google Scholar 

  35. Miyamura Y, Coelho SG, Wolber R, et al. Regulation of human skin pigmentation and responses to ultraviolet radiation. Pigment Cell Res. 2007;20:2-13.

    Google Scholar 

  36. Yamaguchi Y, Takahashi K, Zmudzka BZ, et al. Human skin responses to UV radiation: pigment in the upper epidermis protects against DNA damage in the lower epidermis and facilitates apoptosis. FASEB J. 2006;20:1486-8.

    Google Scholar 

  37. Galibert MD, Carreira S, Goding CR. The Usf-1 transcription factor is a novel target for the stress-responsive p38 kinase and mediates UV-induced tyrosinase expression. EMBO J. 2001;20:5022-31.

    Google Scholar 

  38. Cui R, Widlund HR, Feige E, et al. Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell. 2007;128:853-64.

    Google Scholar 

  39. Mountjoy KG, Robbins LS, Mortrud MT, Cone RD. The cloning of a family of genes that encode the melanocortin receptors. Science. 1992;257:1248-51.

    Google Scholar 

  40. Schioth HB, Phillips SR, Rudzish R, Birch-Machin MA, Wikberg JE, Rees JL. Loss of function mutations of the human melanocortin 1 receptor are common and are associated with red hair. Biochem Biophys Res Commun. 1999;260:488-91.

    Google Scholar 

  41. Bastiaens M, ter Huurne J, Gruis N, et al. The melanocortin-1-receptor gene is the major freckle gene. Hum Mol Genet. 2001;10:1701-8.

    Google Scholar 

  42. Landi MT, Bauer J, Pfeiffer RM, Elder DE, Hulley B, Minghetti P, et al. MC1R germline variants confer risk for BRAFmutant melanoma. Science 2006;313:521-2.

    Google Scholar 

  43. Busc R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 2000;13:60-9.

    Google Scholar 

  44. Passeron T, Bahadoran P, Bertolotto C, Chiaverini C, Busca R, Valony G, et al. Cyclic AMP promotes a peripheral distribution of melanosomes and stimulates melanophilin/Slac2-a and actin association. FASEB J. 2004;18:989-91.

    Google Scholar 

  45. Hirobe T. Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cell Res. 2005;18:2-12.

    Google Scholar 

  46. Yamaguchi Y, Itami S, Watabe H, et al. Mesenchymal–epithelial interactions in the skin: increased expression of dickkopf1 by palmoplantar fibroblasts inhibits melanocyte growth and differentiation. J Cell Biol. 2004;165:275-85.

    Google Scholar 

  47. Yamaguchi Y, Passeron T, Watabe H, et al. The effects of dickkopf 1 on gene expression and Wnt signaling by melanocytes: mechanisms underlying its suppression of melanocyte function and proliferation. J Invest Dermatol. 2007;127:1217-25.

    Google Scholar 

  48. Yamaguchi Y, Passeron T, Hoashi T, et al. Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/beta-catenin signaling in keratinocytes. FASEB J. 2008;22:1009-20.

    Google Scholar 

  49. Choi W, Kolbe L, Hearing VJ. Characterization of the bioactive motif of neuregulin-1, a fibroblast-derived paracrine factor that regulates the constitutive color and the function of melanocytes in human skin. Pigment Cell Melanoma Res. 2012;25:477-81.

    Google Scholar 

  50. Mahmoud BH, Ruvolo E, Hexsel CL, et al. Impact of long-wavelength UVA and visible light on melanocompetent skin. J Invest Dermatol. 2010;130:2092-7.

    Google Scholar 

  51. Lao O, de Gruijter JM, van Duijn K, Navarro A, Kayser M. Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms. Ann Hum Genet. 2007;71:354-69.

    Google Scholar 

  52. Norton HL, Kittles RA, Parra E, et al. Genetic evidence for the convergent evolution of light skin in Europeans and East Asians. Mol Biol Evol. 2007;24:710-22.

    Google Scholar 

  53. Kayser M, Liu F, Janssens AC, Rivadeneira F, et al. Three genome-wide association studies and a linkage analysis identify HERC2 as a human iris color gene. Am J Hum Genet. 2008;82:411-23.

    Google Scholar 

  54. Sturm RA, Duffy DL, Zhao ZZ, et al. A single SNP in an evolutionary conserved region within intron 86 of the HERC2 gene determines human blue-brown eye color. Am J Hum Genet. 2008;82:424-31.

    Google Scholar 

  55. Goding CR. Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 2000;14:1712-28.

    Google Scholar 

  56. Carreira S, Goodall J, Aksan I, et al. Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature. 2005;433:764-9.

    Google Scholar 

  57. Wellbrock C, Marais R. Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation. J Cell Biol. 2005;170:703-8.

    Google Scholar 

  58. Passeron T, Valencia JC, Namiki T, et al. Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid. J Clin Invest. 2009;119:954-63.

    Google Scholar 

MEASURING SKIN COLOR AND PIGMENTATION DISORDERS

  1. Fitzpatrick TB, Szabo G, Seiji M et al in Dermatology in general medicine, Biology of the melanin pigmentary system (section 3, Chapter 14) p131; Mc Graw Hill, 1979.

    Google Scholar 

  2. Stamatas GN, Zmudzka BZ, Kollias N, Beer JZ. In vivo measurement of skin erythema and pigmentation: new means of implementation of diffuse reflectance spectroscopy with a commercial instrument. Br J Dermtol. 2008;159:683-90.

    Google Scholar 

  3. Diffey BL, Robson J. The influence of pigmentation and illumination on the perception of erythema. Photodermatol Photoimmunol Photomed. 1992;9:45-7.

    Google Scholar 

  4. Taylor S, Westerhof W, Im S, and Lim J. Noninvasive techniques for the evaluationof skin color. J Am Acad Dermatol. 2006;54:282-90.

    Google Scholar 

  5. Takiwaki H, Overgaard L, Serup J. Comparison of narrow-band reflectance spectrophotometric and tristimulus colorimetric measurements of skin color. Skin Pharmacol. 1994;7:217-55.

    Google Scholar 

  6. Fullerton A, Fischer T, Lahti A, et al. Guidelines for measurements of skin colour and erythema. Contact Dermatitis. 1996;31:1-10.

    Google Scholar 

  7. Andersen PH, Bjerring P. Nonivasive computerized analysis of skin chromophores in vivo by reflectance spectroscopy. Photodermatol Photoimmunol Photomed. 1990;7:249-57.

    Google Scholar 

  8. Lock-Andersen J, Gniadecka M, de Fine Olivarius F, et al. Skin temperature of UV-induced erythema correlated to laser Doppler flowmetry and skin reflectance measured redness. Skin Res Technol. 1998;4:41-8.

    Google Scholar 

  9. Lock-Andersen J, Therkildsen P, de Fine Olivarius F, et al. Epidermal thickness, skin pigmentation and constitutive photosensitivity. Photodermatol Photoimmunol Photomed. 1997;13:153-58.

    Google Scholar 

  10. Feather J, Ellis DJ, Leslie G. A portable reflectometer for the rapid quantification of cutaneous haemoglobin and melanin. Phys Med Biol. 1988;33:711-22.

    Google Scholar 

  11. Weatherall IL, Coombs BD. Skin color measurements in terms of CIELAB color space values. J Invest Dermatol. 1992;99:468-73.

    Google Scholar 

  12. Pierard GE. EEMCO guidance for the assessment of skin colour. J Eur Acad Dermatol Venerol. 1998;10:1-11.

    Google Scholar 

  13. Alghamdi MA, Kumar A, Taieb A, Ezzedine K. Assessment methods for the evaluation of vitiligo. J Eur Acad Dermatol Venereol. 2012;26,:1463-71.

    Google Scholar 

  14. Liu Z, Sun J, Smith M, Smith L and Warr R. Unsupervised sub-segmentation for pigmented skin lesions. Skin Res Technol. 2012;18:77-87.

    Google Scholar 

  15. Celebi ME, Schaefer G, Iyatomi H, Stoecker WV. Lesion Border Detection in Dermoscopy Images. Comput Med Imaging Graph. 2009;33:148-53.

    Google Scholar 

  16. Galeano J, Jolivot R, Marzani F. Quantification of melanin and hemoglobin in human skin from multispectral image acquisition: use of a neuronal network combined to a non-negative matrix factorization. Appl Comput Math. 2012;11;257-70.

    Google Scholar 

  17. Smith L and MacNeil S. State of the art in non-invasive imaging of cutaneous melanoma. Skin Res Technol. 2011;17:257-69.

    Google Scholar 

  18. Wassermann HP. The colour of human skin. Spectral reflectance versus skin colour. Dermatologica. 1971;143:166-73.

    Google Scholar 

  19. Bornstein M. Color and its measurements. J Soc Cosmetic Chemists. 1968;19:649-67.

    Google Scholar 

  20. Kimbrough-Green CK, Griffiths CE, Finkel LJ, et al. Topical retinoic acid (tretinoin) for melasma in black patients. A vehicle-controlledclinical trial. Arch Dermatol. 1994;130:727-33.

    Google Scholar 

  21. de Rigal J, Abella ML, Giron F, Caisey L, Lefebvre MA. Development and validation of a new Skin Color Chart. Skin Res Technol. 2007;13:101-9.

    Google Scholar 

  22. Chardon A, Cretois I, Hourseau C. Skin colour typology and suntanning pathways. Int J Cosmet Sci. 1991;13:191-208.

    Google Scholar 

  23. Chardon A, Moyal D, Bories MF, et al. Comparing suntans from actual sun using various SPF sunscreens. Cosm and toilet. 1993;79:9.

    Google Scholar 

  24. Fitzpatrick TB. The validity and practicality of sun-reactive skin type I through VI (Editorial). Arch Dermatol. 1988;77;219-21.

    Google Scholar 

  25. Masson P, Merot F. Phototype and ITA° parameters as predictive for determination of MED and SPF in tanned or untanned subjects. Poster; Preprints 17th IFSCC Congress, Yokohama, October 1992.

    Google Scholar 

  26. Park SB, Suh DH, Youn JI. A long-term time course of colorimetric evaluation of ultraviolet light-induced skin reactions. Clin Exp Dermatol. 1999;24:315-20.

    Google Scholar 

  27. Roh K-Y, Kim D, Ha S-J, et al. Pigmentation in Koreans : study of the differences from Caucasians in age, gender and seasonal variations. Brit J Dermatol. 2001;144:94-99.

    Google Scholar 

  28. Andreassi L, Casini L, Simoni S, et al. Measurement of cutaneous colour and assessment of skin type. Photodermatol Photoimmunol Photomed. 1990;7:20-24.

    Google Scholar 

  29. Ferguson J, Brown M, Alert D, et al. Collaborative development of a sun protection factor test method: a proposed European standard. Int J Cosmet Sci. 1996;18:203-18.

    Google Scholar 

  30. Chardon A, Dupont G, Hourseau C, et al. Colorimetric determination of sun-protection-factor. Poster. 15th IFSCC Congress. London. Preprints A/A24. 1988;9:313-22.

    Google Scholar 

  31. Moyal D, Chardon A, Kollias N, UVA protection efficacy of sunscreens can be determined by the persistent pigment darkening (PPD) method (Part 2). Photodermatol Photoimmunol Photomed. 2000;16:250-55.

    Google Scholar 

  32. Stamatas GN, Zmudzka BZ, Kollias N, Beer JZ. Noninvasive measurements of skin pigmentation in situ. Pigment Cell Res. 2004;17;618-26.

    Google Scholar 

  33. Haggblad E, Petersson H, Ilias MA, Anderson CD, Salerud EG. A diffuse reflectance spectroscopic study of UV-induced erythematous reaction across well-defined borders in human skin. Skin Res and Technol. 2010;16:283-90.

    Google Scholar 

  34. Meglinski IV, Matcher SJ. Computer simulation of the skin reflectance spectra. Computer Methods Programs Biomed. 2003;70:179-86.

    Google Scholar 

  35. Wang L, Jacques SL, Zheng L. MCML – Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Programs Biomed. 1995;47:131-46.

    Google Scholar 

  36. Wallace VP, Crawford DC, Mortimer PS, et al. Spectrophotometric assessment of pigmented skin lesions: methods and feature selection for evaluation of diagnostic performance. Phys Med Biol. 2000;45:735-51.

    Google Scholar 

  37. Diffey BL, Oliver RJ, Farr PM. A portable instrument for quantifying erythema induced by ultraviolet radiation. Br J Dermatol. 1984;3:663-72.

    Google Scholar 

  38. Clarys P, Alewaeters K, Lambrecht R, et al. Skin color measurements: comparison between three instruments: the Chromameter®, the DermaSpectrometer® and the Mexameter®. Skin Res and Technol. 2000;6:230-38.

    Google Scholar 

  39. Tian Y, Wang YX, Gu WJ, Zhang P, Sun Y, E Y, Liu W. Physical measurement and evaluation of skin color changes under normal condition and post-ultraviolet radiation: a comparison study of Chromameter CM 2500d and Maxmeter MX18. Skin Res and Technol. 2011;17:304-08.

    Google Scholar 

  40. Van der Wal M, Bloemen M, Verhaegen P, Tuinebreijer W et al. Objective color measurements; clinimetric performance of three devices on normal skin and scar tissue. J Burn Care Res. 2013;34;187-94.

    Google Scholar 

  41. Lim Sh, Kim SM, Lee YW, Ahn KJ, Choe YB. Change of biophysical properties of the skin caused byultraviolet radiationinduced photodamage in Kore. Skin res technol. 2008;14:93-102.

    Google Scholar 

  42. Seitz JC, Withmore CG. Measurement of erythema and tanning response. The time course of UVB and UVC erythema. J Invest Dermatol. 1988;91;454-57.

    Google Scholar 

  43. Yoshimura K, Harii K, Masuda Y, Takahashi M, Aoyama T, Iga T. Usefulness of a narrow-band reflectance spectrophotometer in evaluating effects of depigmenting treatment. Aesthetic Plast Surg. 2001;25:129-33.

    Google Scholar 

  44. Hurley ME, Guevara IL; Gonzales RM; Pandya AG. Efficacy of glycolic acid peels in the treatment of melasma. Arch Dermatol. 2002;138:1578-82.

    Google Scholar 

  45. Gniadecka M, Wulf HC, Mortensen N, et al. Photoprotection in Vitiligo and Normal Skin. Acta Derm Venereol. 1996;76:429-32.

    Google Scholar 

  46. Park ES, Na JI, Kim SO, Huh CH, Youn SW, Park KC. Application of a pigment measuring device –Mexameter – for the differential diagnosis of vitiligo and nevus depigmentosus. Skin res technol. 2006;12:298-302.

    Google Scholar 

  47. Hermanns JF, Petit L, Hermanns-Le T, et al. Analytic quantification of phototype-related regional skin complexion. Skin Res Technol. 2001;7:168-71.

    Google Scholar 

  48. Lock-Andersen J, Wulf HC, Knudstorp ND. Skin pigmentation in Caucasian babies is high and evenly distributed throughout the body. Photodermatol Photoimmunol Photomed. 1998;14:74-76.

    Google Scholar 

  49. Lock-Andersen J, Knudstorp ND, Wulf HC. Facultative skin pigmentation in caucasians: an objective biological indicator of lifetime exposure to ultraviolet radiation ? J Med Invest. 1998;44:121-12.

    Google Scholar 

  50. Garcia A, Fulton JE. The combination of glycolic acid and hydroquinone or kojic acid for the treatment of melasma and related conditions. Dermatol Surg. 1996;22:443-7.

    Google Scholar 

  51. Asawanonda P, Taylor CR. Wood’s light in dermatology. Int J Dermatol. 1999;38:801-7.

    Google Scholar 

  52. Paraskevas LR, Halpern AC, Marghoob AA. Utility of the Wood’s light: five cases from a pigmented lesion clinic. Br J Dermatol. 2005;152:1039-44.

    Google Scholar 

  53. Abbas Q, Fondon Garcia I, Celebi ME, Ahmad W, Mushtaq Q. Unified approach for lesion border detection based on mixture modeling and local entropy thresholding. Skin res technol. 2013;19:314-19.

    Google Scholar 

  54. Garnavi R, Aldeen M, Celebi ME, Varigos G, Finch S. Border detection in dermoscopy images using hybrid thresholding on optimized color channels. Comput Med Imaging Graph. 2011;35:105-15.

    Google Scholar 

  55. Lee G, Lee O, ParkS, Moon J, Oh C. Quantitative color assessment of dermoscopy images using perceptible color regions. Skin res technol. 2012;18:462-70.

    Google Scholar 

  56. Shakya NM, LeAnder RW, Hinton KA, et al. Discrimination of squamous cell carcinoma in situ from seborrheic keratosis by color analysis techniques requires information from scale, scale-crust and surrounding areas in dermoscopy images. Comput biol med. 2012;42:1165-69.

    Google Scholar 

  57. Abbas Q, Celebi ME, Fondon Garcia I. Computer-aided pattern classification system for dermoscopy images. Skin res technol. 2012;18:278-89.

    Google Scholar 

  58. Fulton JE. Utilizing the ultraviolet (UV Detect) camera to enhance the appearance of photodamage and other skin conditions. Dermatol Surg. 1997;23:163-69.

    Google Scholar 

  59. Hofmann-Wellenhoff R, Pellacani G, Malvehy J, Soyer HP Eds. Reflectance confocal microscopy for skin diseases. Springer Verlag Berlin 2012.

    Google Scholar 

  60. Busam KJ, Charles C, Lee G, Halpern AC Morphologic features of melanocytes, pigmented keratinocytes, and melanophages by in vivo confocal scanning laser microscopy. Mod Pathol. 2001;14:862-68.

    Google Scholar 

  61. Kang HY, Bahadoran P, Ortonne JP. Reflectance confocal microscopy for pigmentary disorders. Exp Dermatol. 2010;19:233-39.

    Google Scholar 

  62. Kang HY, le Duff F, Passeron T, Lacour JP, Ortonne JP, Bahadoran P. A noninvasive technique, reflectance confocal microscopy, for the characterization of melanocyte loss in untreated and treated vitiligo lesions. J Am Acad Dermatol. 2010;63:e97-100. doi: 10.1016/j.jaad.2010.02.010.

    Google Scholar 

  63. Kang HY, Bahadoran P et al. In vivo reflectance confocal microscopy detects pigmentary changes in melasma at a cellular level resolution. Exp Dermatol. 2010;19:e228-33.

    Google Scholar 

  64. Lagarrigue SG, George J, Questel E, et al. In vivo quantification of epidermis pigmentation and dermis papilla density with reflectance confocal microscopy: variations with age and skin phototype. Exp Dermatol. 2012;21:281-86.

    Google Scholar 

  65. Garini Y, Young IT, McNamara G. Spectral imaging: Principles and applications. Cytometry. 2006;69A:735-47.

    Google Scholar 

  66. Randeberg LL, Baarstad I; Loke T; Kaspersen P, Svaasand LO. Hyperspectral imaging of bruised skin, Proc. SPIE 6078, Photonic Therapeutics and Diagnostics II, 60780O (February 22, 2006). doi:10.1117/12.646557.

    Google Scholar 

  67. Kuzmina I, Diebele I, Asare L, et al. Multispectral imaging of pigmented and vascular cutaneous malformations: the influence of laser treatment. Proc. SPIE 7376. Laser Applications in Life Sciences, 73760J. 2010. doi:10.1117/12.873701.

    Google Scholar 

  68. Fujii H, Yanagisawa T, Mitsui M, Murakami Y, Yamaguchi M, Ohyama N, Abe T, Yokoi I, Matsuoka Y, Kubota Y. Extraction of acne lesion in acne patients from multispectral images. Conf Proc IEEE Eng Med Biol Soc. 2008; 2008:4078-81. doi:10.1109/IEMBS.2008.4650105.

    Google Scholar 

  69. Prigent S, Descombes X, Zugaj D, et al. Skin lesion evaluation from multispectral images. Hal-00757039, version 1-26 Nov 2012 – INRIA Research Report n°8196 - November 2012:20.

    Google Scholar 

  70. Diebele I, Bekina A, Derjabo A, Kapostinsh J, Kuzmina I, Spigulis J. Analysis of skin basalioma and melanoma by multispectral imaging. Proc. SPIE 8427, Biophotonics: Photonic Solutions for Better Health Care III, 842732. 2012. doi:10.1117/12.922301.

    Google Scholar 

  71. Dhawan AP, D’Alessandro B, Patwardhan S, Mullani N. Multispectral optical imaging of skin-lesions for detection of malignant melanomas. Conf Proc IEEE. Eng Med Biol Soc. 2009;5352-355. doi: 10.1109/IEMBS.2009.5334045.

    Google Scholar 

  72. Kuzmina I, Diebele I, Asare L, et al. Multispectral imaging of pigmented and vascular cutaneous malformations: the influence of laser treatment Proc. Laser Applications in Life Sciences. 2010;7376. doi:10.1117/12.873701.

    Google Scholar 

  73. Diebele I, Kuzmina I, Lihachev A, et al. Clinical evaluation of melanomas and common nevi by spectral imaging. Biomed Opt Express. 2012;3:467-72.

    Google Scholar 

  74. Elbaum M, Kopf AW, Rabinovitz HS, et al. Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study. J Am Acad Dermatol. 2001;44:207-18.

    Google Scholar 

  75. Tsumura N, Haneishi H, Miyake Y. Independent component analysis of skin color image. J Opt Soc Am A. 1991;16:2169-76.

    Google Scholar 

  76. Galeano J, Jolivot R, Marzani F. Quantification of melanin and hemoglobin in human skin from multispectral image acquisition: use of a neuronal network combined to a non-negative matrix factorization. Appl Comput Math. 2012;11:257-70.

    Google Scholar 

  77. Quinzan I, Sotoca JM, Latorre-Carmona P, Pla F, Garcia-Sevilla P, Boldo E. Band selection in spectral imaging for noninvasive melanoma diagnosis. Biomed Opt Express. 2013;4:514-19. doi:10.1364/BOE.4.000514.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Passeron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Passeron, T. (2016). The Mechanism of Pigmentation. In: Passeron, T., Ortonne, JP. (eds) Atlas of Pigmentary Disorders. Adis, Cham. https://doi.org/10.1007/978-3-319-10897-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10897-1_1

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-10896-4

  • Online ISBN: 978-3-319-10897-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics