Skip to main content

Process Analytical Technology and Quality-by-Design for Animal Cell Culture

  • Chapter
  • First Online:
Animal Cell Culture

Part of the book series: Cell Engineering ((CEEN,volume 9))

Abstract

Process Analytical Technology (PAT) is an area of intense research and interest currently. The interest in and applications for PAT span many industries: petrochemicals, bulk chemicals, food, pharmaceuticals and biopharmaceuticals amongst others. Adoption in the biopharmaceutical industry is in its infancy but is being driven by both regulatory demand and the business case. Ultimately, both motivations stem from the fact that effective application of PAT to bioprocesses increases process understanding and process control, mitigating the risk of substandard drug products to both the manufacturer and the patient. In order to realise the value that PAT can offer, all aspects of the PAT system must be considered and appropriately chosen. These include the PAT instrument, data analysis techniques, control strategies and algorithms and process optimization. It is only by the clear definition of the objective for the PAT system and the selection of suitable elements that the value may be realised. This chapter will discuss the instruments, techniques and strategies of relevance to animal cell culture currently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Absi NR, Kenty BM, Cuellar ME, Borys MC, Sakhamuri S, Strachan DJ, Li ZJ (2011) Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng 108:1215–1221

    Article  CAS  PubMed  Google Scholar 

  • Aehle M, Bork K, Schaepe S, Kuprijanov A, Horstkorte R, Simutis R, Lübbert A (2012) Increasing batch-to-batch reproducibility of CHO-cell cultures using a model predictive control approach. Cytotechnology 64:623–634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Al-Rubeai M, Kuystermans D, Mohd A (2012) Automated flow cytometry for monitoring CHO cell cultures. Methods 56:358–365

    Article  PubMed  Google Scholar 

  • Ashoori A, Moshiri B, Khaki-Sedigh A, Bakhtiari MR (2009) Optimal control of a nonlinear fed-batch fermentation process using model predictive approach. J Process Control 19:1162–1173

    Article  CAS  Google Scholar 

  • Bailey J, Ollis D (1986) Biochemical engineering fundamentals. McGraw-Hill Education, New York

    Google Scholar 

  • Batt BC, Kompala DS (1989) A structured kinetic modeling framework for the dynamics of hybridoma growth and monoclonal antibody production in continuous suspension cultures. Biotechnol Bioeng 34:515–531

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Craig IK (2008) Economic assessment of advanced process control – a survey and framework. J Process Control 18:2–18

    Article  CAS  Google Scholar 

  • Becker T, Hitzmann B, Muffler K, Pörtner R, Reardon KF, Stahl F, Ulber R (2007) Future aspects of bioprocess monitoring. Adv Biochem Eng Biotechnol 105:249–293

    CAS  PubMed  Google Scholar 

  • Bequette BW (2007) Non-linear model predictive control: a personal retrospective. Can J Chem Eng 85:408–415

    Article  CAS  Google Scholar 

  • Beutel S, Henkel S (2011) In situ sensor techniques in modern bioprocess monitoring. Appl Microbiol Biotechnol 91:1493–1505

    Article  CAS  PubMed  Google Scholar 

  • Biegler LT (1998) Advances in nonlinear programming concepts for process control. J Process Control 8:301–311

    Article  CAS  Google Scholar 

  • Boudreau M, McMillan G (2007) New directions in bioprocess modeling and control: maximizing process analytical technology benefits. ISA, Research Triangle Park, North Carolina

    Google Scholar 

  • Broger T, Odermatt RP, Huber P, Sonnleitner B (2011) Real-time on-line flow cytometry for bioprocess monitoring. J Biotechnol 154:240–247

    Article  CAS  PubMed  Google Scholar 

  • Brognaux A, Han S, Sorenson S, Lebeau P, Delvigne F (2013) A low-cost, multiplexable, automated flow cytometry procedure for the characterization of microbial stress dynamics in bioreactors. Microb Cell Factories 12:100

    Article  Google Scholar 

  • Callanan K (2004) A model way to control fermentation. Control Global. http://www.controlglobal.com/articles/2004/39/

  • Canney WM (2005) Are you getting the full benefits from your advanced process control systems? Hydrocarb Process 84:55–58

    Google Scholar 

  • Carvell JP, Dowd JE (2006) On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance. Cytotechnology 50:35–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cherry GA, Qin SJ (2005) Batch synchronization and monitoring using data interpolation and dynamic time warping with principal component analysis. In: TWMCC meeting, Austin, Texas

    Google Scholar 

  • Chiang LH, Braatz RD, Russell EL (2001) Fault detection and diagnosis in industrial systems. Springer, Heidelberg, p 279

    Book  Google Scholar 

  • Chiang LH, Leardi R, Pell RJ, Seasholtz MB (2006) Industrial experiences with multivariate statistical analysis of batch process data. Chemom Intell Lab Syst 81:109–119

    Article  CAS  Google Scholar 

  • Chong L, Saghafi M, Knappe C, Steigmiller S, Matanguihan C, Goudar CT (2013) Robust on-line sampling and analysis during long-term perfusion cultivation of mammalian cells. J Biotechnol 165:133–137

    Article  CAS  PubMed  Google Scholar 

  • Craven S, Shirsat N, Whelan J, Glennon B (2013) Process model comparison and transferability across bioreactor scales and modes of operation for a mammalian cell bioprocess. Biotechnol Prog 29:186–196

    Article  CAS  PubMed  Google Scholar 

  • Craven S, Whelan J, Glennon B (2014) Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller. J Process Control 24:344–357

    Article  CAS  Google Scholar 

  • Dalili M, Sayles GD, Ollis DF (1990) Glutamine-limited batch hybridoma growth and antibody production: experiment and model. Biotechnol Bioeng 36:74–82

    CAS  PubMed  Google Scholar 

  • De Andrés-Toro B, Girón-Sierra JM, López-Orozco JA, Fernández-Conde C, Peinado JM, García-Ochoa F (1998) A kinetic model for beer production under industrial operational conditions. Math Comput Simul 48:65–74

    Article  Google Scholar 

  • deZengotita VM, Miller WM, Aunins JG, Zhou W (2000) Phosphate feeding improves high-cell-concentration NS0 myeloma culture performance for monoclonal antibody production. Biotechnol Bioeng 69:566–576

    Article  CAS  PubMed  Google Scholar 

  • FDA (2004) Guidance for industry guidance for industry PAT – a framework for innovative pharmaceutical development, manufacturing and quality assurance. U.S. Department of Health and Human Services Food and Drug Administration, Center for Biologics Evaluation and Research, Rockville

    Google Scholar 

  • Foley R, Hennessy S, Marison IW (2012) Potential of mid-infrared spectroscopy for on-line monitoring of mammalian cell culture medium components. Appl Spectrosc 66:33–39

    Article  CAS  Google Scholar 

  • Galluzzo M, Cosenza B (2010) 20th European symposium on computer aided process engineering, Computer aided chemical engineering, Elsevier, Amsterdam, The Netherlands, vol 28, pp 571–576

    Google Scholar 

  • Gray DR, Chen S, Howarth W, Inlow D, Maiorella BL (1996) CO(2) in large-scale and high-density CHO cell perfusion culture. Cytotechnology 22:65–78

    Article  CAS  PubMed  Google Scholar 

  • Gunther J, Conner J, Seborg D (2007) Fault detection and diagnosis in an industrial fed-batch cell culture process. Biotechnol Prog 23:851–857

    Article  CAS  PubMed  Google Scholar 

  • Gunther J, Conner J, Seborg D (2008) PLS pattern matching in design of experiment, batch process data. Chemom Intell Lab Syst 94:43–50

    Article  CAS  Google Scholar 

  • Gunther J, Baclaski J, Seborg D, Conner J (2009) Pattern matching in batch bioprocesses – comparisons across multiple products and operating conditions. Comput Chem Eng 33:88–96

    Article  CAS  Google Scholar 

  • Hauge TA, Slora R, Lie B (2005) Application and roll-out of infinite horizon MPC employing a nonlinear mechanistic model to paper machines. J Process Control 15:201–213

    Article  CAS  Google Scholar 

  • Jenzsch M, Simutis R, Eisbrenner G, Stückrath I, Lübbert A (2006) Estimation of biomass concentrations in fermentation processes for recombinant protein production. Bioprocess Biosyst Eng 29:19–27

    Article  CAS  PubMed  Google Scholar 

  • Jerden C, Folger T, Dee M (2003) Advanced control in small scale biotechnology development. Presentation at Emerson Exchange, Nashville, Tennessee

    Google Scholar 

  • Joeris K, Frerichs J-G, Konstantinov K, Scheper T (2002) In-situ microscopy: online process monitoring of mammalian cell cultures. Cytotechnology 38:129–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirdar AO, Conner JS, Baclaski J, Rathore AS (2007) Application of multivariate analysis toward biotech processes: case study of a cell-culture unit operation. Biotechnol Prog 23:61–67

    Article  CAS  PubMed  Google Scholar 

  • Kirdar AO, Green KD, Rathore AS (2008) Application of multivariate data analysis for identification and successful resolution of a root cause for a bioprocessing application. Biotechnol Prog 24:720–726

    Article  CAS  PubMed  Google Scholar 

  • Kourti T (2005) Abnormal situation detection and projection methods – industrial applications. Chemom Intell Lab Syst 76:215–220

    Article  CAS  Google Scholar 

  • Kurokawa H, Park YS, Iijima S, Kobayashi T (1994) Growth characteristics in fed-batch culture of hybridoma cells with control of glucose and glutamine concentrations. Biotechnol Bioeng 44:95–103

    Article  CAS  PubMed  Google Scholar 

  • Kuystermans D, Mohd A, Al-Rubeai M (2012) Automated flow cytometry for monitoring CHO cell cultures. Methods 56:358–365

    Article  CAS  PubMed  Google Scholar 

  • Larson TM, Gawlitzek M, Evans H, Albers U, Cacia J (2002) Chemometric evaluation of on-line high-pressure liquid chromatography in mammalian cell cultures: analysis of amino acids and glucose. Biotechnol Bioeng 77:553–563

    Article  CAS  PubMed  Google Scholar 

  • Lee YY, Yap MGS, Hu W-S, Wong KTK (2003) Low-glutamine fed-batch cultures of 293-HEK serum-free suspension cells for adenovirus production. Biotechnol Prog 19:501–509

    Article  CAS  PubMed  Google Scholar 

  • Li L, Mi L, Feng Q, Liu R, Tang H, Xie L, Chen Z (2005) Increasing the culture efficiency of hybridoma cells by the use of integrated metabolic control of glucose and glutamine at low levels. Biotechnol Appl Biochem 42:73–80

    Article  CAS  PubMed  Google Scholar 

  • Liu Y-H, Bi J-X, Zeng A-P, Yuan J-Q (2008) A simple kinetic model for myeloma cell culture with consideration of lysine limitation. Bioprocess Biosyst Eng 31:569–577

    Article  CAS  PubMed  Google Scholar 

  • Lopes JA, Menezes JC (2003) Industrial fermentation end-product modelling with multilinear PLS. Chemom Intell Lab Syst 68:75–81

    Article  CAS  Google Scholar 

  • Lopes JA, Menezes JC, Westerhuis JA, Smilde AK (2002) Multiblock PLS analysis of an industrial pharmaceutical process. Biotechnol Bioeng 80:419–427

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Toh PC, Burnett I, Li F, Hudson T, Amanullah A, Li J (2013) Automated dynamic fed-batch process and media optimization for high productivity cell culture process development. Biotechnol Bioeng 110:191–205

    Article  CAS  PubMed  Google Scholar 

  • Machin M, Liesum L, Peinado A (2011) Implementation of modeling approaches in the QbD framework: examples from the Novartis experience. Eur Pharm Rev 16:39–42

    Google Scholar 

  • MacMichael G, Armiger WB, Lee JF, Mutharasan R (1987) On-line measurement of hybridoma growth by culture fluorescence. Biotechnol Tech 1:213–218

    Article  Google Scholar 

  • McGovern AC, Broadhurst D, Taylor J, Kaderbhai N, Winson MK, Small DA, Goodacre R (2002) Monitoring of complex industrial bioprocesses for metabolite concentrations using modern spectroscopies and machine learning: application to gibberellic acid production. Biotechnol Bioeng 78:527–538

    Article  CAS  PubMed  Google Scholar 

  • Morari M (1983) Design of resilient processing plants – III. Chem Eng Sci 38:1881–1891

    Article  Google Scholar 

  • Nyttle VG, Chidambaram M (1993) Fuzzy logic control of a fed-batch fermentor. Bioprocess Eng 9:115–118

    Article  CAS  Google Scholar 

  • Özkan L, Kothare MV, Georgakis C (2000) Model predictive control of nonlinear systems using piecewise linear models. Comput Chem Eng 24:793–799

    Article  Google Scholar 

  • Passino K, Yurkovich S, Reinfrank M (1998) Fuzzy control. Addison Wesley, Menlo Park, California

    Google Scholar 

  • Pörtner R, Schäfer T (1996) Modelling hybridoma cell growth and metabolism–a comparison of selected models and data. J Biotechnol 49:119–135

    Article  PubMed  Google Scholar 

  • Qin SJ, Badgwell TA (2003) A survey of industrial model predictive control technology. Control Eng Pract 11:733–764

    Article  Google Scholar 

  • Rao G, Bambot S, Kwong S, Szmacinski H, Sipior J, Holavanahaali R, Carter G (1994) Application of fluorescence sensing to bioreactors. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy: probe design and chemical sensing, vol 4. Kluwer Academic, Boston, pp 417–448

    Chapter  Google Scholar 

  • Rathore AS, Winkle H (2009) Quality by design for biopharmaceuticals. Nat Biotechnol 27:26–34

    Article  CAS  PubMed  Google Scholar 

  • Rathore AS, Wood R, Sharma A, Dermawan S (2008) Case study and application of process analytical technology (PAT) towards bioprocessing: II. Use of ultra-performance liquid chromatography (UPLC) for making real-time pooling decisions for process chromatography. Biotechnol Bioeng 101:1366–1374

    Article  CAS  PubMed  Google Scholar 

  • Read EK, Park JT, Shah RB, Riley BS, Brorson KA, Rathore AS (2010a) Process analytical technology (PAT) for biopharmaceutical products: part I. Concepts and applications. Biotechnol Bioeng 105:276–284

    Article  CAS  PubMed  Google Scholar 

  • Read EK, Shah RB, Riley BS, Park JT, Brorson KA, Rathore AS (2010b) Process analytical technology (PAT) for biopharmaceutical products: part II. Concepts and applications. Biotechnol Bioeng 105:285–295

    Article  CAS  PubMed  Google Scholar 

  • Rotem Y, Wachs A, Lewin DR (2000) Ethylene compressor monitoring using model-based PCA. AIChE J 46:1825–1836

    Article  CAS  Google Scholar 

  • Roychoudhury P, O’Kennedy R, McNeil B, Harvey LM (2007) Multiplexing fibre optic near infrared (NIR) spectroscopy as an emerging technology to monitor industrial bioprocesses. Anal Chim Acta 590:110–117

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Shridhar P, Gohil D (2010) Control chart: a statistical process control tool in pharmacy. Asian J Pharm 4:184

    Article  Google Scholar 

  • Shimizu H, Yasuoka K, Uchiyama K, Shioya S (1998) Bioprocess fault detection by nonlinear multivariate analysis: application of an artificial autoassociative neural network and wavelet filter bank. Biotechnol Prog 14:79–87

    Article  CAS  PubMed  Google Scholar 

  • Silva RG, Cruz AJG, Hokka CO, Giordano RLC, Giordano RC (2000) A hybrid feedforward neural network model for the cephalosporin C production process. Braz J Chem Eng 17:587–598

    Article  CAS  Google Scholar 

  • Sitton G, Srienc F (2008) Mammalian cell culture scale-up and fed-batch control using automated flow cytometry. J Biotechnol 135:174–180

    Article  CAS  PubMed  Google Scholar 

  • Sivakesava S, Irudayaraj J, Ali D (2001a) Simultaneous determination of multiple components in lactic acid fermentation using FT-MIR, NIR, and FT-Raman spectroscopic techniques. Process Biochem 37:371–378

    Article  CAS  Google Scholar 

  • Sivakesava S, Irudayaraj J, Demirci A (2001b) Monitoring a bioprocess for ethanol production using FT-MIR and FT-Raman spectroscopy. J Ind Microbiol Biotechnol 26:185–190

    Article  CAS  PubMed  Google Scholar 

  • Spichiger S, Spichiger-Keller UE (2010) Process monitoring with disposable chemical sensors fit in the framework of process analysis technology (PAT) for innovative pharmaceutical development and quality assurance. CHIMIA Int J Chem 64:803–807

    Article  CAS  Google Scholar 

  • St Amand MM, Millili PG, McCabe MM, Ogunnaike BA (2012) Strategic vision for integrated process analytical and advanced control in biologics manufacturing. In: Undey C, Low D, Menezes JC, Koch M (eds) PAT applied in biopharmaceutical process development and manufacturing. CRC Press, Boca Raton, pp 9–28

    Google Scholar 

  • Tremblay M, Perrier M, Chavarie C, Archambault J (1992) Optimization of fed-batch culture of hybridoma cells using dynamic programming: single and multi feed cases. Bioprocess Eng 7:229–234

    Article  Google Scholar 

  • Uchiyama K, Shioya S (1999) Modeling and optimization of α-amylase production in a recombinant yeast fed-batch culture taking account of the cell cycle population distribution. J Biotechnol 71:133–141

    Article  CAS  PubMed  Google Scholar 

  • Ãœndey C, Tatara E, Çınar A (2004) Intelligent real-time performance monitoring and quality prediction for batch/fed-batch cultivations. J Biotechnol 108:61–77

    Article  PubMed  Google Scholar 

  • Vojinović V, Cabral JMS, Fonseca LP (2006) Real-time bioprocess monitoring. Sensors Actuators B Chem 114:1083–1091

    Article  Google Scholar 

  • Warth B, Rajkai G, Mandenius C-F (2010) Evaluation of software sensors for on-line estimation of culture conditions in an Escherichia coli cultivation expressing a recombinant protein. J Biotechnol 147:37–45

    Article  CAS  PubMed  Google Scholar 

  • Whelan J, Craven S, Glennon B (2012a) In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors. Biotechnol Prog 28:1355–1362

    Article  CAS  PubMed  Google Scholar 

  • Whelan J, Murphy E, Pearson A, Jeffers P, Kieran P, McDonnell S, Raposo S, Lima-Costa ME, Glennon B (2012b) Use of focussed beam reflectance measurement (FBRM) for monitoring changes in biomass concentration. Bioprocess Biosyst Eng 35:963–975

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Ozturk SS, Blackie JD, Thrift JC, Figueroa C, Naveh D (1995) Evaluation and applications of optical cell density probes in mammalian cell bioreactors. Biotechnol Bioeng 45:495–502

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Bonis I, Theodoropoulos C (2011) Off-line model reduction for on-line linear MPC of nonlinear large-scale distributed systems. Comput Chem Eng 35:750–757

    Article  CAS  Google Scholar 

  • Zhou W, Hu WS (1994) On-line characterization of a hybridoma cell culture process. Biotechnol Bioeng 44:170–177

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Rehm J, Hu WS (1995) High viable cell concentration fed-batch cultures of hybridoma cells through on-line nutrient feeding. Biotechnol Bioeng 46:579–587

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Chen CC, Buckland B, Aunins J (1997) Fed-batch culture of recombinant NS0 myeloma cells with high monoclonal antibody production. Biotechnol Bioeng 55:783–792

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Whelan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Craven, S., Whelan, J. (2015). Process Analytical Technology and Quality-by-Design for Animal Cell Culture. In: Al-Rubeai, M. (eds) Animal Cell Culture. Cell Engineering, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-10320-4_21

Download citation

Publish with us

Policies and ethics