Skip to main content

Building a Cell Culture Process with Stable Foundations: Searching for Certainty in an Uncertain World

  • Chapter
  • First Online:
Animal Cell Culture

Part of the book series: Cell Engineering ((CEEN,volume 9))

Abstract

Considerable effort is expended during the mammalian cell line construction process to find a stably-transfected clone capable of supporting the large-scale manufacture of a recombinant therapeutic protein. Such a clone must synthesise a sufficient volumetric concentration of the product with the correct biochemical characteristics (glycosylation, structural integrity, etc.). Furthermore, this performance must be maintained over the extended time period required to support a manufacturing campaign in 20,000 L bioreactors. However, a significant proportion of recombinant clonal cell lines show production instability over long-term sub-culture, where volumetric product yield and/or product quality are not maintained. This instability can potentially extend product development timelines and can affect the ability of a manufacturing process to meet market demand. In the worse-case scenario it can also jeopardise patient safety if product quality is impaired. In order to prevent this, industrial cell line construction processes include long-term stability studies where several candidate lead clones are serially sub-cultured and monitored for signs of instability before selecting the final production cell line. The roots of production instability are varied, but the epigenetic silencing of transgenes at sites of host cell chromosome integration, and the direct mutation or loss of transgenes are prominent molecular causes. Considerable research has been conducted by both industry and academic groups into the molecular mechanisms underpinning instability, with an emphasis on uncovering early predictive markers of incipient instability as well as preventing its occurrence. In this article we present a detailed overview of the industrial experience of production instability and its impact on the manufacturing of recombinant therapeutics. We also discuss our current understanding of the molecular causes of cell line instability and how this has been used to mitigate the impact of this phenomenon through novel vector redesigns and cell line screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-Aza:

5-aza-2′-deoxycytidine

ACE:

Artificial chromosome expression

ADCC:

Antibody-dependent cellular cytotoxicity

CDC:

Complement-dependent cytotoxicity

CHO:

Current good manufacturing practice

cGMP:

Chinese hamster ovary

CNV:

Copy number variation

DHFR:

Dihydrofolate reductase

DSB:

Double strand DNA break

FACS:

Fluorescence-activated cell sorter

GS:

Glutamine synthetase

HAT:

Histone acetyltransferase

HC:

Antibody heavy chain

hCMV-MIE:

Human cytomegalovirus major immediate early promoter/enhancer

IAA:

Intracellular antibody

IR:

Initiation region

IRES:

Internal ribosome entry site

LC:

Antibody light chain

LCR:

Low copy repeat

Mab:

Monoclonal antibody

MAR:

Matrix attachment region

MCB:

Master cell bank

MMBIR:

Microhomology-mediated break-induced replication

MSX:

Methionine sulphoximine

MTX:

Methotrexate

NAHR:

Non-allelic homologous recombination

POI:

Protein of interest

qP:

Cell-specific recombinant protein production rate

RIGS:

Repeat-induced gene silencing

SDS:

Sodium dodecylsulphate

SSA:

Single-strand annealing

TF:

Transcription factor

TSS:

Transcription start site

UCOE:

Ubiquitous chromatin opening elements

UTR:

Untranslated region

WCB:

Working cell bank

References

  • Altschuler SJ, Wu LF (2010) Cellular heterogeneity: do differences make a difference? Cell 141:559–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aquilina G, Hess P, Branch P, MacGeoch C, Casciano I, Karran P, Bignami M (1994) A mismatch recognition defect in colon carcinoma confers DNA microsatellite instability and a mutator phenotype. Proc Natl Acad Sci U S A 91:8905–8909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arope S, Harraghy N, Pjanic M, Mermod N (2013) Molecular characterization of a human matrix attachment region epigenetic regulator. PLoS One 8:e79262

    Article  PubMed Central  PubMed  Google Scholar 

  • Attfield PV, Choi HY, Veal DA, Bell PJ (2001) Heterogeneity of stress gene expression and stress resistance among individual cells of Saccharomyces cerevisiae. Mol Microbiol 40:1000–1008

    Article  CAS  PubMed  Google Scholar 

  • Avery SV (2005) Cell individuality: the bistability of competence development. Trends Microbiol 13:459–462

    Article  CAS  PubMed  Google Scholar 

  • Bailey LA, Hatton D, Field R, Dickson AJ (2012) Determination of Chinese hamster ovary cell line stability and recombinant antibody expression during long-term culture. Biotechnol Bioeng 109:2093–2103

    Article  CAS  PubMed  Google Scholar 

  • Barlow JH, Faryabi RB, Callén E, Wong N, Malhowski A, Chen HT, Gutierrez-Cruz G, Sun HW, McKinnon P, Wright G, Casellas R, Robbiani DF, Staudt L, Fernandez-Capetillo O, Nussenzweig A (2013) Identification of early replicating fragile sites that contribute to genome instability. Cell 152:620–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barnes LM, Bentley CM, Dickson AJ (2003) Stability of protein production from recombinant mammalian cells. Biotechnol Bioeng 81:631–639

    Article  CAS  PubMed  Google Scholar 

  • Barnes LM, Bentley CM, Dickson AJ (2004) Molecular definition of predictive indicators of stable protein expression in recombinant NS0 myeloma cells. Biotechnol Bioeng 85:115–121

    Article  CAS  PubMed  Google Scholar 

  • Barnes LM, Bentley CM, Moy N, Dickson AJ (2007) Molecular analysis of successful cell line selection in transfected GS-NS0 myeloma cells. Biotechnol Bioeng 96:337–348

    Article  CAS  PubMed  Google Scholar 

  • Beckmann TF, Krämer O, Klausing S, Heinrich C, Thüte T, Büntemeyer H, Hoffrogge R, Noll T (2012) Effects of high passage cultivation on CHO cells: a global analysis. Appl Microbiol Biotechnol 94:659–671

    Article  CAS  PubMed  Google Scholar 

  • Benton T, Chen T, McEntee M, Fox B, King D, Crombie R, Thomas TC, Bebbington C (2002) The use of UCOE vectors in combination with a preadapted serum free, suspension cell line allows for rapid production of large quantities of protein. Cytotechnology 38:43–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhargava A, Fuentes FF (2010) Mutational dynamics of microsatellites. Mol Biotechnol 44:250–266

    Article  CAS  PubMed  Google Scholar 

  • Bielas JH, Loeb KR, Rubin BP, True LD, Loeb LA (2006) Human cancers express a mutator phenotype. Proc Natl Acad Sci U S A 103:18238–18242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bird A, Taggart M, Frommer M, Miller OJ, Macleod D (1985) A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 40:91–99

    Article  CAS  PubMed  Google Scholar 

  • Boyd PN, Lines AC, Patel AK (1995) The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol Immunol 32:1311–1318

    Article  CAS  PubMed  Google Scholar 

  • Browne SM, Al-Rubeai M (2007) Selection methods for high-producing mammalian cell lines. Trends Biotechnol 25:425–432

    Article  CAS  PubMed  Google Scholar 

  • Candido EP, Reeves R, Davie JR (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14:105–113

    Article  CAS  PubMed  Google Scholar 

  • Canitrot Y, Cazaux C, Fréchet M, Bouayadi K, Lesca C, Salles B, Hoffmann JS (1998) Overexpression of DNA polymerase beta in cell results in a mutator phenotype and a decreased sensitivity to anticancer drugs. Proc Natl Acad Sci U S A 95:12586–12590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao Y, Kimura S, Itoi T, Honda K, Ohtake H, Omasa T (2012) Construction of BAC-based physical map and analysis of chromosome rearrangement in Chinese hamster ovary cell lines. Biotechnol Bioeng 109:1357–1367

    Article  CAS  PubMed  Google Scholar 

  • Chang WP, Little JB (1992) Persistently elevated frequency of spontaneous mutations in progeny of CHO clones surviving X-irradiation: association with delayed reproductive death phenotype. Mutat Res 270:191–199

    Article  CAS  PubMed  Google Scholar 

  • Chang M, Liu R, Jin Q, Liu Y, Wang X (2014) Scaffold/Matrix attachment regions from CHO cell chromosome enhanced the stable transfection efficiency and the expression of transgene in CHO cells. Biotechnol Appl Biochem. doi:10.1002/bab.1204

    Google Scholar 

  • Chen Y, Zhang B, Feng H, Shu W, Chen GY, Zhong JF (2012) An automated microfluidic device for assessment of mammalian cell genetic stability. Lab Chip 12:3930–3935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiu YH, Yu Q, Sandmeier JJ, Bi X (2003) A targeted histone acetyltransferase can create a sizable region of hyperacetylated chromatin and counteract the propagation of transcriptionally silent chromatin. Genetics 165:115–125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NS, Yap MG (2009) A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer? Biotechnol Bioeng 102:1182–1196

    Article  CAS  PubMed  Google Scholar 

  • Combs RG, Yu E, Roe S, Piatchek MB, Jones HL, Mott J, Kennard ML, Goosney DL, Monteith D (2011) Fed-batch bioreactor performance and cell line stability evaluation of the artificial chromosome expression technology expressing an IgG1 in Chinese hamster ovary cells. Biotechnol Prog 27:201–208

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz HJ, Peixoto CM, Nimtz M, Alves PM, Dias EM, Moreira JL, Carrondo MJ (2000) Metabolic shifts do not influence the glycosylation patterns of a recombinant fusion protein expressed in BHK cells. Biotechnol Bioeng 69:129–139

    Article  CAS  PubMed  Google Scholar 

  • Cruz HJ, Conradt HS, Dunker R, Peixoto CM, Cunha AE, Thomaz M, Burger C, Dias EM, Clemente J, Moreira JL, Rieke E, Carrondo MJ (2002) Process development of a recombinant antibody/interleukin-2 fusion protein expressed in protein-free medium by BHK cells. J Biotechnol 96:169–183

    Article  CAS  PubMed  Google Scholar 

  • Damen CW, Chen W, Chakraborty AB, van Oosterhout M, Mazzeo JR, Gebler JC, Schellens JH, Rosing H, Beijnen JH (2009) Electrospray ionization quadrupole ion-mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-glycosylation profile of the therapeutic monoclonal antibody trastuzumab. J Am Soc Mass Spectrom 20:2021–2033

    Article  CAS  PubMed  Google Scholar 

  • Davies SL, Lovelady CS, Grainger RK, Racher AJ, Young RJ, James DC (2013) Functional heterogeneity and heritability in CHO cell populations. Biotechnol Bioeng 110:260–274

    Article  CAS  PubMed  Google Scholar 

  • De Leon Gatti M, Wlaschin KF, Nissom PM, Yap M, Hu WS (2007) Comparative transcriptional analysis of mouse hybridoma and recombinant Chinese hamster ovary cells undergoing butyrate treatment. J Biosci Bioeng 103:82–91

    Article  PubMed  CAS  Google Scholar 

  • DeMaria CT, Cairns V, Schwarz C, Zhang J, Guerin M, Zuena E, Estes S, Karey KP (2007) Accelerated clone selection for recombinant CHO CELLS using a FACS-based high-throughput screen. Biotechnol Prog 23:465–472

    Article  CAS  PubMed  Google Scholar 

  • Derouazi M, Martinet D, Besuchet Schmutz N, Flaction R, Wicht M, Bertschinger M, Hacker DL, Beckmann JS, Wurm FM (2006) Genetic characterization of CHO production host DG44 and derivative recombinant cell lines. Biochem Biophys Res Commun 340:1069–1077

    Article  CAS  PubMed  Google Scholar 

  • Dharshanan S, Chong H, Cheah SH, Zamrod Z (2013) Stable expression of H1C2 monoclonal antibody in NS0 and CHO cells using pFUSE and UCOE expression system. Cytotechnology. doi:10.1007/s10616-013-9615-x

    PubMed Central  PubMed  Google Scholar 

  • Dickson AJ (2009) Importance of genetic environment for recombinant gene expression. In: Al-Rubeai M (ed) Cell line development. Cell engineering, vol 6. Springer, Dordrecht, pp 83–96

    Chapter  Google Scholar 

  • Dorai H, Sauerwald T, Campbell A, Kyung YS, Goldstein J, Magill A, Lewis MJ, Tang QM, Jan D, Ganguly S, Moore G (2007) Investigation of product microheterogeneity: a case study in rapid detection of mutation in mammalian production cell lines. Bioprocess Int 5:66–72

    CAS  Google Scholar 

  • Dorai H, Corisdeo S, Ellis D, Kinney C, Chomo M, Hawley-Nelson P, Moore G, Betenbaugh MJ, Ganguly S (2012) Early prediction of instability of Chinese hamster ovary cell lines expressing recombinant antibodies and antibody-fusion proteins. Biotechnol Bioeng 109:1016–1030

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Mujacic M, Le K, Caspary G, Nunn H, Heath C, Reddy P (2013) Analysis of heterogeneity and instability of stable Mab-expressing CHO cells. Biotechnol Bioprocess Eng 18:419–429

    Article  CAS  Google Scholar 

  • Eckert KA, Hile SE (2009) Every microsatellite is different: intrinsic DNA features dictate mutagenesis of common microsatellites present in the human genome. Mol Carcinog 48:379–388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fairweather DS, Fox M, Margison GP (1987) The in vitro lifespan of MRC-5 cells is shortened by 5-azacytidine-induced demethylation. Exp Cell Res 168:153–159

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Frye CC, Racher AJ (2013) The use of glutamine synthetase as a selection marker: recent advances in Chinese hamster ovary cell line generation processes. Pharm Bioprocess 1:487–502

    Article  Google Scholar 

  • Fann CH, Guirgis F, Chen G, Lao MS, Piret JM (2000) Limitations to the amplification and stability of human tissue-type plasminogen activator expression by Chinese hamster ovary cells. Biotechnol Bioeng 69:204–212

    Article  CAS  PubMed  Google Scholar 

  • Feng HT, Sim LC, Wan C, Wong NS, Yang Y (2011) Rapid characterization of protein productivity and production stability of CHO cells by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 25:1407–1412

    Article  CAS  PubMed  Google Scholar 

  • Fernandes RL, Nierychlo M, Lundin L, Pedersen AE, Puentes Tellez PE, Dutta A, Carlquist M, Bolic A, Schäpper D, Brunetti AC, Helmark S, Heins AL, Jensen AD, Nopens I, Rottwitt K, Szita N, van Elsas JD, Nielsen PH, Martinussen J, Sørensen SJ, Lantz AE, Gernaey KV (2011) Experimental methods and modeling techniques for description of cell population heterogeneity. Biotechnol Adv 29:575–599

    Article  PubMed  CAS  Google Scholar 

  • Garrick D, Fiering S, Martin DI, Whitelaw E (1998) Repeat-induced gene silencing in mammals. Nat Genet 18:56–59

    Article  CAS  PubMed  Google Scholar 

  • Ginno PA, Lott PL, Christensen HC, Korf I, Chédin F (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45:814–825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Girod PA, Zahn-Zabal M, Mermod N (2005) Use of the chicken lysozyme 5′ matrix attachment region to generate high producer CHO cell lines. Biotechnol Bioeng 91:1–11

    Article  CAS  PubMed  Google Scholar 

  • Girod PA, Nguyen DQ, Calabrese D, Puttini S, Grandjean M, Martinet D, Regamey A, Saugy D, Beckmann JS, Bucher P, Mermod N (2007) Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat Methods 4:747–753

    Article  CAS  PubMed  Google Scholar 

  • Glover TW, Arlt MF, Casper AM, Durkin SG (2005) Mechanisms of common fragile site instability. Hum Mol Genet 14(Spec no 2):R197–R205

    Article  CAS  PubMed  Google Scholar 

  • Goetze AM, Schenauer MR, Flynn GC (2010) Assessing monoclonal antibody product quality attribute criticality through clinical studies. MAbs 2:500–507

    Article  PubMed Central  PubMed  Google Scholar 

  • Gorman C, Bullock C (2000) Site-specific gene targeting for gene expression in eukaryotes. Curr Opin Biotechnol 11:455–460

    Article  CAS  PubMed  Google Scholar 

  • Goymer P (2008) Natural selection: the evolution of cancer. Nature 454:1046–1048

    Article  CAS  PubMed  Google Scholar 

  • Greenwood SK, Hill RB, Sun JT, Armstrong MJ, Johnson TE, Gara JP, Galloway SM (2004) Population doubling: a simple and more accurate estimation of cell growth suppression in the in vitro assay for chromosomal aberrations that reduces irrelevant positive results. Environ Mol Mutagen 43:36–44

    Article  CAS  PubMed  Google Scholar 

  • Gu W, Zhang F, Lupski JR (2008) Mechanisms for human genomic rearrangements. Pathogenetics 1:4

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Harraghy N, Buceta M, Regamey A, Girod PA, Mermod N (2012) Using matrix attachment regions to improve recombinant protein production. Methods Mol Biol 801:93–110

    Article  CAS  PubMed  Google Scholar 

  • Hastings PJ, Ira G, Lupski JR (2009a) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5:e1000327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009b) Mechanisms of change in gene copy number. Nat Rev Genet 10:551–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, Edsall LE, Kuan S, Luu Y, Klugman S, Antosiewicz-Bourget J, Ye Z, Espinoza C, Agarwahl S, Shen L, Ruotti V, Wang W, Stewart R, Thomson JA, Ecker JR, Ren B (2010) Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6:479–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heinrich C, Wolf T, Kropp C, Northoff S, Noll T (2011) Growth characterization of CHO DP-12 cell lines with different high passage histories. BMC Proc 5(Suppl 8):P29

    Article  PubMed Central  Google Scholar 

  • Heller-Harrison RA, Crowe K, Cooley C, Hone M, McCarthy K, Leonard M (2009) Managing cell line instability and its impact during cell line development. BioPharm Int Suppl 22:16–27, http://www.biopharminternational.com/biopharm/Downstream+Processing/Managing-Cell-Line-Instability-and-Its-Impact-Duri/ArticleStandard/Article/detail/601147

  • Hermentin P, Witzel R, Kanzy EJ, Diderrich G, Hoffmann D, Metzner H, Vorlop J, Haupt H (1996) The hypothetical N-glycan charge: a number that characterizes protein glycosylation. Gycobiology 6:217–230

    Article  CAS  Google Scholar 

  • Hinz JM, Meuth M (1999) MSH3 deficiency is not sufficient for a mutator phenotype in Chinese hamster ovary cells. Carcinogenesis 20:215–220

    Article  CAS  PubMed  Google Scholar 

  • Ho SC, Bardor M, Feng H, Mariati, Tong YW, Song Z, Yap MG, Yang Y (2012) IRES-mediated Tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines. J Biotechnol 157:130–139

    Article  CAS  PubMed  Google Scholar 

  • Hodoniczky J, Zheng YZ, James DC (2005) Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodelling in vitro. Biotechnol Prog 21:1644–1652

    Article  CAS  PubMed  Google Scholar 

  • Huang Y-M, Hu W, Rustandi E, Chang K, Yusuf-Makagiansar H, Ryll T (2010) Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol Prog 26:1400–1410

    Article  CAS  PubMed  Google Scholar 

  • Hughes P, Marshall D, Reid Y, Parkes H, Gelber C (2007) The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? Biotechniques 43:575, 577–578, 581–582 passim

    Article  CAS  PubMed  Google Scholar 

  • ICH Expert Working Group (1997) Derivation and characterisation of cell substrates used for production of biotechnological/biological products Q5D, ICH Harmonised Tripartite Guidelines, International conference on Harmonisation, pp 1–13, http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q5D/Step4/Q5D_Guideline.pdf

  • ICH Expert Working Group (2009) Pharmaceutical development Q8(R2). 2, ICH Harmonised Tripartite Guideline, International conference on Harmonisation, pp 1–28, http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_R1/Step4/Q8_R2_Guideline.pdf

  • ICH Expert Working Group (2012) Development and manufacture of drug substances (chemical entities and biotechnological/biological entities) Q11. 1, ICH Harmonised Tripartite Guideline, International conference on Harmonisation, pp 1–26, http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q11/Q11_Step_4.pdf

  • Illingworth RS, Bird AP (2009) CpG islands – ‘a rough guide’. FEBS Lett 583:1713–1720

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Huang Y, Sharfstein ST (2006) Regulation of recombinant monoclonal antibody production in chinese hamster ovary cells: a comparative study of gene copy number, mRNA level, and protein expression. Biotechnol Prog 22:313–318

    Article  CAS  PubMed  Google Scholar 

  • Jun SC, Kim MS, Hong HJ, Lee GM (2006) Limitations to the development of humanized antibody producing Chinese hamster ovary cells using glutamine synthetase-mediated gene amplification. Biotechnol Prog 22:770–780

    Article  CAS  PubMed  Google Scholar 

  • Kaelin WG Jr, McKnight SL (2013) Influence of metabolism on epigenetics and disease. Cell 153:56–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaneko Y, Sato R, Aoyagi H (2010) Evaluation of Chinese hamster ovary cell stability during repeated batch culture for large-scale antibody production. J Biosci Bioeng 109:274–280

    Article  CAS  PubMed  Google Scholar 

  • Kaufman RJ, Wasley LC, Spiliotes AJ, Gossels SD, Latt SA, Larsen GR, Kay RM (1985) Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells. Mol Cell Biol 5:1750–1759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kennard ML, Goosney DG, Ledebur HC (2007) Generating stable, high-expressing cell lines for recombinant protein manufacture. Biopharm Int 20:52–59

    CAS  Google Scholar 

  • Kennard ML, Goosney DL, Monteith D, Roe S, Fischer D, Mott J (2009a) Auditioning of CHO host cell lines using the artificial chromosome expression (ACE) technology. Biotechnol Bioeng 104:526–539

    Article  CAS  PubMed  Google Scholar 

  • Kennard ML, Goosney DG, Monteith D, Zhang L, Moffatt M, Fischer D, Mott J (2009b) The generation of stable, high MAb expressing CHO cell lines based on the artificial chromosome expression (ACE) technology. Biotechnol Bioeng 104:540–553

    Article  CAS  PubMed  Google Scholar 

  • Kieft JS (2008) Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci 33:274–283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kildegaard HF, Baycin-Hizal D, Lewis NE, Betenbaugh MJ (2013) The emerging CHO systems biology era: harnessing the ‘omics revolution for biotechnology. Curr Opin Biotechnol 24:1102–1107

    Article  PubMed  CAS  Google Scholar 

  • Kim NS, Kim SJ, Lee GM (1998a) Clonal variability within dihydrofolate reductase-mediated gene amplified Chinese hamster ovary cells: stability in the absence of selective pressure. Biotechnol Bioeng 60:679–688

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Kim NS, Ryu CJ, Hong HJ, Lee GM (1998b) Characterization of chimeric antibody producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnol Bioeng 58:73–84

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, Kim JS, Park DH, Kang HS, Yoon J, Baek K, Yoon Y (2004) Improved recombinant gene expression in CHO cells using matrix attachment regions. J Biotechnol 107:95–105

    Article  CAS  PubMed  Google Scholar 

  • Kim JD, Yoon Y, Hwang HY, Park JS, Yu S, Lee J, Baek K, Yoon J (2005) Efficient selection of stable chinese hamster ovary (CHO) cell lines for expression of recombinant proteins by using human interferon beta SAR element. Biotechnol Prog 21:933–937

    Article  CAS  PubMed  Google Scholar 

  • Kim PJ, Lee DY, Jeong H (2009) Centralized modularity of N-linked glycosylation pathways in mammalian cells. PLoS One 4:e7317

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim M, O’Callaghan PM, Droms KA, James DC (2011) A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnol Bioeng. doi:10.1002/bit.23189

    Google Scholar 

  • Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930

    Article  CAS  PubMed  Google Scholar 

  • Krajewski WA, Becker PB (1998) Reconstitution of hyperacetylated, DNase I-sensitive chromatin characterized by high conformational flexibility of nucleosomal DNA. Proc Natl Acad Sci U S A 95:1540–1545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kromenaker SJ, Srienc F (1994) Stability of producer hybridoma cell lines after cell sorting: a case study. Biotechnol Prog 10:299–307

    Article  CAS  PubMed  Google Scholar 

  • Kwaks TH, Otte AP (2006) Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells. Trends Biotechnol 24:137–142

    Article  CAS  PubMed  Google Scholar 

  • Kwaks TH, Barnett P, Hemrika W, Siersma T, Sewalt RG, Satijn DP, Brons JF, van Blokland R, Kwakman P, Kruckeberg AL, Kelder A, Otte AP (2003) Identification of anti-repressor elements that confer high and stable protein production in mammalian cells. Nat Biotechnol 21:553–558

    Article  CAS  PubMed  Google Scholar 

  • Kwaks TH, Sewalt RG, van Blokland R, Siersma TJ, Kasiem M, Kelder A, Otte AP (2005) Targeting of a histone acetyltransferase domain to a promoter enhances protein expression levels in mammalian cells. J Biotechnol 115:35–46

    Article  CAS  PubMed  Google Scholar 

  • Lee GM, Varma A, Palsson BO (1991) Application of population balance model to the loss of hybridoma antibody productivity. Biotechnol Prog 7:72–75

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Kim YG, Lee EG, Lee GM (2013) Digital mRNA profiling of N-glycosylation gene expression in recombinant Chinese hamster ovary cells treated with sodium butyrate. J Biotechnol 171C:56–60

    Google Scholar 

  • Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O’Brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C, Xie M, Chen W, Li N, Baycin-Hizal D, Latif H, Forster J, Betenbaugh MJ, Famili I, Xu X, Wang J, Palsson BO (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 31:759–765

    Article  CAS  PubMed  Google Scholar 

  • Li B, Carey M, Workman JL (2007a) The role of chromatin during transcription. Cell 128:707–719

    Article  CAS  PubMed  Google Scholar 

  • Li J, Menzel C, Meier D, Zhang C, Dübel S, Jostock T (2007b) A comparative study of different vector designs for the mammalian expression of recombinant IgG antibodies. J Immunol Methods 318:113–124

    Article  CAS  PubMed  Google Scholar 

  • Li F, Vijayasankaran N, Shen AY, Kiss R, Amanullah A (2010) Cell culture processes for monoclonal antibody production. MAbs 2:466–479

    Article  PubMed Central  PubMed  Google Scholar 

  • Lifely MR, Hale C, Boyce S, Keen MJ, Phillips J (1995) Glycosylation and biological activity of CAMPATH-1H expressed in different cell lines and grown under different culture conditions. Glycobiology 5:813–822

    Article  CAS  PubMed  Google Scholar 

  • Lindenbaum M, Perkins E, Csonka E, Fleming E, Garcia L, Greene A, Gung L, Hadlaczky G, Lee E, Leung J, MacDonald N, Maxwell A, Mills K, Monteith D, Perez CF, Shellard J, Stewart S, Stodola T, Vandenborre D, Vanderbyl S, Ledebur HC Jr (2004) A mammalian artificial chromosome engineering system (ACE system) applicable to biopharmaceutical protein production, transgenesis and gene-based cell therapy. Nucleic Acids Res 32:e172

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu P, Erez A, Nagamani SC, Dhar SU, Kołodziejska KE, Dharmadhikari AV, Cooper ML, Wiszniewska J, Zhang F, Withers MA, Bacino CA, Campos-Acevedo LD, Delgado MR, Freedenberg D, Garnica A, Grebe TA, Hernández-Almaguer D, Immken L, Lalani SR, McLean SD, Northrup H, Scaglia F, Strathearn L, Trapane P, Kang SH, Patel A, Cheung SW, Hastings PJ, Stankiewicz P, Lupski JR, Bi W (2011) Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146:889–903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu P, Carvalho CM, Hastings PJ, Lupski JR (2012) Mechanisms for recurrent and complex human genomic rearrangements. Curr Opin Genet Dev 22:211–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loeb LA (2001) A mutator phenotype in cancer. Cancer Res 61:3230–3239

    CAS  PubMed  Google Scholar 

  • Luo J, Zhang J, Ren D, Tsai WL, Li F, Amanullah A, Hudson T (2012) Probing of C-terminal lysine variation in a recombinant monoclonal antibody production using Chinese hamster ovary cells with chemically defined media. Biotechnol Bioeng 109:2306–2315

    Article  CAS  PubMed  Google Scholar 

  • Lupski JR, Stankiewicz P (2005) Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet 1:e49

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Matzner I, Savelyeva L, Schwab M (2003) Preferential integration of a transfected marker gene into spontaneously expressed fragile sites of a breast cancer cell line. Cancer Lett 189:207–219

    Article  CAS  PubMed  Google Scholar 

  • McBurney MW, Mai T, Yang X, Jardine K (2002) Evidence for repeat-induced gene silencing in cultured Mammalian cells: inactivation of tandem repeats of transfected genes. Exp Cell Res 274:1–8

    Article  CAS  PubMed  Google Scholar 

  • Meisler MH (1992) Insertional mutation of ‘classical’ and novel genes in transgenic mice. Trends Genet 8:341–344

    CAS  PubMed  Google Scholar 

  • Mishmar D, Rahat A, Scherer SW, Nyakatura G, Hinzmann B, Kohwi Y, Mandel-Gutfroind Y, Lee JR, Drescher B, Sas DE, Margalit H, Platzer M, Weiss A, Tsui LC, Rosenthal A, Kerem B (1998) Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by the cloning of a simian virus 40 integration site. Proc Natl Acad Sci U S A 95:8141–8146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Molina N, Suter DM, Cannavo R, Zoller B, Gotic I, Naef F (2013) Stimulus-induced modulation of transcriptional bursting in a single mammalian gene. Proc Natl Acad Sci U S A 110:20563–20568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mondello C, Smirnova A, Giulotto E (2010) Gene amplification, radiation sensitivity and DNA double-strand breaks. Mutat Res 704:29–37

    Article  CAS  PubMed  Google Scholar 

  • Nair AR, Jinger X, Hermiston TW (2011) Effect of different UCOE-promoter combinations in creation of engineered cell lines for the production of Factor VIII. BMC Res Notes 4:178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability–an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11:220–228

    Article  CAS  PubMed  Google Scholar 

  • Noguchi C, Araki Y, Miki D, Shimizu N (2012) Fusion of the Dhfr/Mtx and IR/MAR gene amplification methods produces a rapid and efficient method for stable recombinant protein production. PLoS One 7:e52990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan PM, James DC (2008) Systems biotechnology of mammalian cell factories. Brief Funct Genomic Proteomics 7:95–110

    Article  CAS  Google Scholar 

  • Ohbayashi F, Mitani KO (2006) Chromosomal integration sites of double-stranded linear DNA in mouse ES cells. Mol Ther 13:S147

    Article  Google Scholar 

  • Osterlehner A, Simmeth S, Göpfert U (2011) Promoter methylation and transgene copy numbers predict unstable protein production in recombinant Chinese hamster ovary cell lines. Biotechnol Bioeng 108:2670–2681

    Article  CAS  PubMed  Google Scholar 

  • Paredes V, Park JS, Jeong Y, Yoon J, Baek K (2013) Unstable expression of recombinant antibody during long-term culture of CHO cells is accompanied by histone H3 hypoacetylation. Biotechnol Lett 35:987–993

    Article  CAS  PubMed  Google Scholar 

  • Phi-Van L, von Kries JP, Ostertag W, Strätling WH (1990) The chicken lysozyme 5′ matrix attachment region increases transcription from a heterologous promoter in heterologous cells and dampens position effects on the expression of transfected genes. Mol Cell Biol 10:2302–2307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pilbrough W, Munro TP, Gray P (2009) Intraclonal protein expression heterogeneity in recombinant CHO cells. PLoS One 4:e8432

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pohjanpelto P, Hölttä E (1990) Deprivation of a single amino acid induces protein synthesis-dependent increases in c-jun, c-myc, and ornithine decarboxylase mRNAs in Chinese hamster ovary cells. Mol Cell Biol 10:5814–5821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porter AJ, Racher AJ, Preziosi R, Dickson AJ (2010) Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: improving the efficiency of cell line generation. Biotechnol Prog 26:1455–1464

    Article  CAS  PubMed  Google Scholar 

  • Prochownik EV, Li Y (2007) The ever expanding role for c-Myc in promoting genomic instability. Cell Cycle 6:1024–1029

    Article  CAS  PubMed  Google Scholar 

  • Pu H, Cashion LM, Kretschmer PJ, Liu Z (1998) Rapid establishment of high-producing cell lines using dicistronic vectors with glutamine synthetase as the selection marker. Mol Biotechnol 10:17–25

    Article  CAS  PubMed  Google Scholar 

  • Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4:e309

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rassool FV, McKeithan TW, Neilly ME, van Melle E, Espinosa R 3rd, Le Beau MM (1991) Preferential integration of marker DNA into the chromosomal fragile site at 3p14: an approach to cloning fragile sites. Proc Natl Acad Sci U S A 88:6657–6661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richards EJ, Elgin SC (2002) Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108:489–500

    Article  CAS  PubMed  Google Scholar 

  • Romney CA, Paulauskis JD, Nagasawa H, Little JB (2001) Multiple manifestations of X-ray-induced genomic instability in Chinese hamster ovary (CHO) cells. Mol Carcinog 32:118–127

    Article  CAS  PubMed  Google Scholar 

  • Rosser JM, An W (2010) Repeat-induced gene silencing of L1 transgenes is correlated with differential promoter methylation. Gene 456:15–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salmen A, Lindgren K, Bylund L, Gelius G, Fenge C, Skoging-Nyberg U (2009) Efficient development of stable high-titer cell lines for biopharmaceutical manufacturing. Bioprocess Int 7(11):34–39

    Google Scholar 

  • Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103:1412–1417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schiestl M, Stangler T, Torella C, Cepeljnik T, Toll H, Grau R (2011) Acceptable changes in quality attributes of glycosylated biopharmaceuticals. Nat Biotechnol 29:310–312

    Article  CAS  PubMed  Google Scholar 

  • Schmitt MW, Prindle MJ, Loeb LA (2012) Implications of genetic heterogeneity in cancer. Ann N Y Acad Sci 1267:110–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shen H, Laird PW (2013) Interplay between the cancer genome and epigenome. Cell 153:38–55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shmookler Reis RJ, Goldstein S (1982) Variability of DNA methylation patterns during serial passage of human diploid fibroblasts. Proc Natl Acad Sci U S A 79:3949–3953

    Article  CAS  PubMed  Google Scholar 

  • Siegfried Z, Simon I (2010) DNA methylation and gene expression. Wiley Interdiscip Rev Syst Biol Med 2:362–371

    Article  CAS  PubMed  Google Scholar 

  • Stankiewicz P, Lupski JR (2002) Genome architecture, rearrangements and genomic disorders. Trends Genet 18:74–82

    Article  CAS  PubMed  Google Scholar 

  • Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA, McLaren S, Lin ML, McBride DJ, Varela I, Nik-Zainal S, Leroy C, Jia M, Menzies A, Butler AP, Teague JW, Quail MA, Burton J, Swerdlow H, Carter NP, Morsberger LA, Iacobuzio-Donahue C, Follows GA, Green AR, Flanagan AM, Stratton MR, Futreal PA, Campbell PJ (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stockholm D, Benchaouir R, Picot J, Rameau P, Neildez TM, Landini G, Laplace-Builhé C, Paldi A (2007) The origin of phenotypic heterogeneity in a clonal cell population in vitro. PLoS One 2:e394

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Strutzenberger K, Borth N, Kunert R, Steinfellner W, Katinger H (1999) Changes during subclone development and ageing of human antibody-producing recombinant CHO cells. J Biotechnol 69:215–226

    Article  CAS  PubMed  Google Scholar 

  • Sun FL, Elgin SC (1999) Putting boundaries on silence. Cell 99:459–462

    Article  CAS  PubMed  Google Scholar 

  • Sved J, Bird A (1990) The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proc Natl Acad Sci U S A 87:4692–4696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Umaña P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimised antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17:176–180

    Article  PubMed  Google Scholar 

  • Van Berkel PH, Gerritsen J, Perdok G, Valbjørn J, Vink T, van de Winkel JG, Parren PW (2009) N-linked glycosylation is an important parameter for optimal selection of cell lines producing biopharmaceutical human IgG. Biotechnol Prog 25:244–251

    Article  PubMed  Google Scholar 

  • Van Blokland HJ, Hoeksema F, Siep M, Otte AP, Verhees JA (2011) Methods to create a stringent selection system for mammalian cell lines. Cytotechnology 63:371–384

    Article  PubMed Central  PubMed  Google Scholar 

  • Vauhkonen H, Vauhkonen M, Sajantila A, Sipponen P, Knuutila S (2006) Characterizing genetically stable and unstable gastric cancers by microsatellites and array comparative genomic hybridization. Cancer Genet Cytogenet 170:133–139

    Article  CAS  PubMed  Google Scholar 

  • Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  • Weidle UH, Buckel P, Wienberg J (1988) Amplified expression constructs for human tissue-type plasminogen activator in Chinese hamster ovary cells: instability in the absence of selective pressure. Gene 66:193–203

    Article  CAS  PubMed  Google Scholar 

  • Williams S, Mustoe T, Mulcahy T, Griffiths M, Simpson D, Antoniou M, Irvine A, Mountain A, Crombie R (2005) CpG-island fragments from the HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells. BMC Biotechnol 5:17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wippermann A, Klausing S, Rupp O, Albaum SP, Büntemeyer H, Noll T, Hoffrogge R (2014) Establishment of a CpG island microarray for analyses of genome-wide DNA methylation in Chinese hamster ovary cells. Appl Microbiol Biotechnol 98:579–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Meyer BJ (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333:307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wurm FM (2013) CHO quasispecies-implications for manufacturing processes. Processes 1:296–311

    Article  Google Scholar 

  • Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, Andersen MR, Neff N, Passarelli B, Koh W, Fan HC, Wang J, Gui Y, Lee KH, Betenbaugh MJ, Quake SR, Famili I, Palsson BO, Wang J (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29:735–741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Y, Mariati, Chusainow J, Yap MG (2010) DNA methylation contributes to loss in productivity of monoclonal antibody-producing CHO cell lines. J Biotechnol 147:180–185

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Alvin K, Latif H, Hsu A, Parikh V, Whitmer T, Tellers M, de la Cruz Edmonds MC, Ly J, Salmon P, Markusen JF (2010) Rapid protein production using CHO stable transfection pools. Biotechnol Prog 26:1431–1437

    Article  CAS  PubMed  Google Scholar 

  • Yee JC, de Leon Gatti M, Philp RJ, Yap M, Hu WS (2008) Genomic and proteomic exploration of CHO and hybridoma cells under sodium butyrate treatment. Biotechnol Bioeng 99:1186–1204

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa T, Nakanishi F, Ogura Y, Oi D, Omasa T, Katakura Y, Kishimoto M, Suga K (2000) Amplified gene location in chromosomal DNA affected recombinant protein production and stability of amplified genes. Biotechnol Prog 16:710–715

    Article  CAS  PubMed  Google Scholar 

  • You JS, Jones PA (2012) Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22:9–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young JI, Smith JR (2001) DNA methyltransferase inhibition in normal human fibroblasts induces a p21-dependent cell cycle withdrawal. J Biol Chem 276:19610–19616

    Article  CAS  PubMed  Google Scholar 

  • Yuen CT, Zhou Y, Wang QZ, Hou JF, Bristow A, Wang JZ (2011) Glycan analysis of glycoprotein pharmaceuticals: evaluation of analytical approaches to Z number determination in pharmaceutical erythropoietin products. Biologicals 39:396–403

    Article  CAS  PubMed  Google Scholar 

  • Zahn-Zabal M, Kobr M, Girod PA, Imhof M, Chatellard P, de Jesus M, Wurm F, Mermod N (2001) Development of stable cell lines for production or regulated expression using matrix attachment regions. J Biotechnol 87:29–42

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Carvalho CM, Lupski JR (2009) Complex human chromosomal and genomic rearrangements. Trends Genet 25:298–307

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Liu ZG, Sun ZW, Huang Y, Yu WY (2010) Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system. J Biotechnol 147:122–129

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ms Alison Sykes, Dr Hilary Metcalfe, Dr Ramon Gomez de la Cuesta, and Dr Robert Young for their useful criticism of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Racher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

O’Callaghan, P.M., Racher, A.J. (2015). Building a Cell Culture Process with Stable Foundations: Searching for Certainty in an Uncertain World. In: Al-Rubeai, M. (eds) Animal Cell Culture. Cell Engineering, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-10320-4_12

Download citation

Publish with us

Policies and ethics