Skip to main content

Pathogenesis of Hepatic Steatosis and Fibrosis: Role of Leptin

  • Chapter
  • First Online:
Leptin

Abstract

Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver abnormalities, ranging from simple steatosis, to steatohepatitis and cirrhosis, in the absence of “excessive” alcohol consumption or any other identifiable cause(s) for liver disease [1]. Histologically, NAFLD can be categorized into: (1) simple steatosis in the absence of hepatocellular injury (nonalcoholic fatty liver, NAFL); and (2) steatohepatitis (nonalcoholic steatohepatitis, NASH), characterized by the presence of steatosis and inflammation with hepatic injury (ballooning), with or without fibrosis [1]. NASH can progress to cirrhosis, liver failure, and rarely liver cancer, whereas the progression to more severe forms of liver disease is minimal in patients with NAFL. Steatosis is the hallmark of NAFL and NAFLD and can be defined chemically, when intrahepatic triglyceride (IHTG) content exceeds 5 % of liver volume or liver weight [2], histologically, when 5 % of hepatocytes contain visible intracellular triglyceride [3], and radiologically, by using magnetic resonance spectroscopy (MRS) [4]. The results from one study in subjects who were considered to be at low-risk for NAFLD (i.e., normal weight, normal fasting serum glucose and alanine aminotransferase concentrations, and absence of diabetes) indicate an upper “normal” amount of IHTG of 5.6 % of liver volume, which represented the 95th percentile in this population [5]. Data from another study found the 95th percentile for IHTG content was 3 % in young lean subjects with normal oral glucose tolerance [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55:2005–23.

    PubMed  Google Scholar 

  2. Hoyumpa Jr AM, Greene HL, Dunn GD, Schenker S. Fatty liver: biochemical and clinical considerations. Am J Dig Dis. 1975;20:1142–70.

    CAS  PubMed  Google Scholar 

  3. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–21.

    PubMed  Google Scholar 

  4. Fabbrini E, Conte C, Magkos F. Methods for assessing intrahepatic fat content and steatosis. Curr Opin Clin Nutr Metab Care. 2009;12:474–81.

    PubMed  Google Scholar 

  5. Szczepaniak LS, Nurenberg P, Leonard D, et al. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab. 2005;288:E462–8.

    CAS  PubMed  Google Scholar 

  6. Petersen KF, Dufour S, Feng J, et al. Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men. Proc Natl Acad Sci U S A. 2006;103:18273–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Ruhl CE, Everhart JE. Determinants of the association of overweight with elevated serum alanine aminotransferase activity in the United States. Gastroenterology. 2003;124:71–9.

    CAS  PubMed  Google Scholar 

  8. Lee JY, Kim KM, Lee SG, et al. Prevalence and risk factors of non-alcoholic fatty liver disease in potential living liver donors in Korea: a review of 589 consecutive liver biopsies in a single center. J Hepatol. 2007;47:239–44.

    PubMed  Google Scholar 

  9. Marcos A, Fisher RA, Ham JM, et al. Selection and outcome of living donors for adult to adult right lobe transplantation. Transplantation. 2000;69:2410–5.

    CAS  PubMed  Google Scholar 

  10. Hilden M, Christoffersen P, Juhl E, Dalgaard JB. Liver histology in a ‘normal’ population—examinations of 503 consecutive fatal traffic casualties. Scand J Gastroenterol. 1977;12:593–7.

    CAS  PubMed  Google Scholar 

  11. Lee RG. Nonalcoholic steatohepatitis: a study of 49 patients. Hum Pathol. 1989;20:594–8.

    CAS  PubMed  Google Scholar 

  12. Gholam PM, Kotler DP, Flancbaum LJ. Liver pathology in morbidly obese patients undergoing Roux-en-Y gastric bypass surgery. Obes Surg. 2002;12:49–51.

    PubMed  Google Scholar 

  13. Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40:1461–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Browning JD, Szczepaniak LS, Dobbins R, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40:1387–95.

    PubMed  Google Scholar 

  15. Fabbrini E, Magkos F. Obesity and the pathogenesis of nonalcoholic fatty liver disease. In: Kushner RF, Bessesen DH, editors. Treatment of the obese patient, 2nd ed. New York, NY: Springer; 2014:121–35.

    Google Scholar 

  16. Korenblat KM, Fabbrini E, Mohammed BS, Klein S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology. 2008;134:1369–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab. 2002;87:3023–8.

    CAS  PubMed  Google Scholar 

  18. Sanyal AJ, Campbell-Sargent C, Mirshahi F, et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 2001;120:1183–92.

    CAS  PubMed  Google Scholar 

  19. Bugianesi E, Gastaldelli A, Vanni E, et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia. 2005;48:634–42.

    CAS  PubMed  Google Scholar 

  20. Fabbrini E, Magkos F, Mohammed BS, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A. 2009;106:15430–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Vega GL, Chandalia M, Szczepaniak LS, Grundy SM. Metabolic correlates of nonalcoholic fatty liver in women and men. Hepatology. 2007;46:716–22.

    CAS  PubMed  Google Scholar 

  22. Magkos F, Su X, Bradley D, et al. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology. 2012;142:1444.e2–6.e2.

    Google Scholar 

  23. Kumashiro N, Erion DM, Zhang D, et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A. 2011;108:16381–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology. 2014;59:713–23.

    PubMed  Google Scholar 

  25. Jornayvaz FR, Shulman GI. Diacylglycerol activation of protein kinase Cepsilon and hepatic insulin resistance. Cell Metab. 2012;15:574–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11:183–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Monetti M, Levin MC, Watt MJ, et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab. 2007;6:69–78.

    CAS  PubMed  Google Scholar 

  28. Minehira K, Young SG, Villanueva CJ, et al. Blocking VLDL secretion causes hepatic steatosis but does not affect peripheral lipid stores or insulin sensitivity in mice. J Lipid Res. 2008;49:2038–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Grefhorst A, Hoekstra J, Derks TG, et al. Acute hepatic steatosis in mice by blocking beta-oxidation does not reduce insulin sensitivity of very-low-density lipoprotein production. Am J Physiol Gastrointest Liver Physiol. 2005;289:G592–8.

    CAS  PubMed  Google Scholar 

  30. Yu XX, Murray SF, Pandey SK, et al. Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology. 2005;42:362–71.

    CAS  PubMed  Google Scholar 

  31. Amaro A, Fabbrini E, Kars M, et al. Dissociation between intrahepatic triglyceride content and insulin resistance in familial hypobetalipoproteinemia. Gastroenterology. 2010;139:149–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Visser ME, Lammers NM, Nederveen AJ, et al. Hepatic steatosis does not cause insulin resistance in people with familial hypobetalipoproteinaemia. Diabetologia. 2011;54:2113–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Fabbrini E, deHaseth D, Deivanayagam S, Mohammed BS, Vitola BE, Klein S. Alterations in fatty acid kinetics in obese adolescents with increased intrahepatic triglyceride content. Obesity (Silver Spring). 2009;17:25–9.

    CAS  Google Scholar 

  34. Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology. 2008;134:424–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Pardina E, Baena-Fustegueras JA, Catalan R, et al. Increased expression and activity of hepatic lipase in the liver of morbidly obese adult patients in relation to lipid content. Obes Surg. 2009;19:894–904.

    PubMed  Google Scholar 

  36. Westerbacka J, Kolak M, Kiviluoto T, et al. Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes. 2007;56:2759–65.

    CAS  PubMed  Google Scholar 

  37. Miquilena-Colina ME, Lima-Cabello E, Sanchez-Campos S, et al. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut. 2011;60:1394–402.

    CAS  PubMed  Google Scholar 

  38. Hellerstein MK, Schwarz JM, Neese RA. Regulation of hepatic de novo lipogenesis in humans. Annu Rev Nutr. 1996;16:523–57.

    CAS  PubMed  Google Scholar 

  39. Barrows BR, Parks EJ. Contributions of different fatty acid sources to very low-density lipoprotein-triacylglycerol in the fasted and fed states. J Clin Endocrinol Metab. 2006;91:1446–52.

    CAS  PubMed  Google Scholar 

  40. Diraison F, Moulin P, Beylot M. Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab. 2003;29:478–85.

    CAS  PubMed  Google Scholar 

  41. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Petersen KF, Dufour S, Savage DB, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A. 2007;104:12587–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Ibdah JA, Perlegas P, Zhao Y, et al. Mice heterozygous for a defect in mitochondrial trifunctional protein develop hepatic steatosis and insulin resistance. Gastroenterology. 2005;128:1381–90.

    CAS  PubMed  Google Scholar 

  44. Zhang D, Liu ZX, Choi CS, et al. Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. Proc Natl Acad Sci U S A. 2007;104:17075–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Seo YS, Kim JH, Jo NY, et al. PPAR agonists treatment is effective in a nonalcoholic fatty liver disease animal model by modulating fatty-acid metabolic enzymes. J Gastroenterol Hepatol. 2008;23:102–9.

    CAS  PubMed  Google Scholar 

  46. Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest. 2003;112:91–100.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Stefanovic-Racic M, Perdomo G, Mantell BS, Sipula IJ, Brown NF, O’Doherty RM. A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels. Am J Physiol Endocrinol Metab. 2008;294:E969–77.

    CAS  PubMed  Google Scholar 

  48. Savage DB, Choi CS, Samuel VT, et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest. 2006;116:817–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Chalasani N, Gorski JC, Asghar MS, et al. Hepatic cytochrome P450 2E1 activity in nondiabetic patients with nonalcoholic steatohepatitis. Hepatology. 2003;37:544–50.

    CAS  PubMed  Google Scholar 

  50. Kotronen A, Seppala-Lindroos A, Vehkavaara S, et al. Liver fat and lipid oxidation in humans. Liver Int. 2009;29:1439–46.

    CAS  PubMed  Google Scholar 

  51. Greco D, Kotronen A, Westerbacka J, et al. Gene expression in human NAFLD. Am J Physiol Gastrointest Liver Physiol. 2008;294:G1281–7.

    CAS  PubMed  Google Scholar 

  52. Kohjima M, Enjoji M, Higuchi N, et al. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med. 2007;20:351–8.

    CAS  PubMed  Google Scholar 

  53. Schonfeld G, Patterson BW, Yablonskiy DA, et al. Fatty liver in familial hypobetalipoproteinemia: triglyceride assembly into VLDL particles is affected by the extent of hepatic steatosis. J Lipid Res. 2003;44:470–8.

    CAS  PubMed  Google Scholar 

  54. Cuchel M, Bloedon LT, Szapary PO, et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med. 2007;356:148–56.

    CAS  PubMed  Google Scholar 

  55. Adiels M, Taskinen MR, Packard C, et al. Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia. 2006;49:755–65.

    CAS  PubMed  Google Scholar 

  56. Lee Y, Wang MY, Kakuma T, et al. Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia. J Biol Chem. 2001;276:5629–35.

    CAS  PubMed  Google Scholar 

  57. Singh A, Wirtz M, Parker N, et al. Leptin-mediated changes in hepatic mitochondrial metabolism, structure, and protein levels. Proc Natl Acad Sci U S A. 2009;106:13100–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Baffy G, Zhang CY, Glickman JN, Lowell BB. Obesity-related fatty liver is unchanged in mice deficient for mitochondrial uncoupling protein 2. Hepatology. 2002;35:753–61.

    CAS  PubMed  Google Scholar 

  59. Leclercq IA, Vansteenberghe M, Lebrun VB, et al. Defective hepatic regeneration after partial hepatectomy in leptin-deficient mice is not rescued by exogenous leptin. Lab Invest. 2006;86:1161–71.

    CAS  PubMed  Google Scholar 

  60. Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci U S A. 1997;94:2557–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Ge F, Zhou S, Hu C, Lobdell 4th H, Berk PD. Insulin- and leptin-regulated fatty acid uptake plays a key causal role in hepatic steatosis in mice with intact leptin signaling but not in ob/ob or db/db mice. Am J Physiol Gastrointest Liver Physiol. 2010;299:G855–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Asilmaz E, Cohen P, Miyazaki M, et al. Site and mechanism of leptin action in a rodent form of congenital lipodystrophy. J Clin Invest. 2004;113:414–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Cohen P, Miyazaki M, Socci ND, et al. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science. 2002;297:240–3.

    CAS  PubMed  Google Scholar 

  64. Stucchi P, Guzman-Ruiz R, Gil-Ortega M, et al. Leptin resistance develops spontaneously in mice during adult life in a tissue-specific manner. Consequences for hepatic steatosis. Biochimie. 2011;93:1779–85.

    CAS  PubMed  Google Scholar 

  65. Warne JP, Alemi F, Reed AS, et al. Impairment of central leptin-mediated PI3K signaling manifested as hepatic steatosis independent of hyperphagia and obesity. Cell Metab. 2011;14:791–803.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Huang W, Dedousis N, Bandi A, Lopaschuk GD, O’Doherty RM. Liver triglyceride secretion and lipid oxidative metabolism are rapidly altered by leptin in vivo. Endocrinology. 2006;147:1480–7.

    CAS  PubMed  Google Scholar 

  67. Huang W, Dedousis N, O’Doherty RM. Hepatic steatosis and plasma dyslipidemia induced by a high-sucrose diet are corrected by an acute leptin infusion. J Appl Physiol. 2007;102:2260–5.

    CAS  PubMed  Google Scholar 

  68. Huang W, Metlakunta A, Dedousis N, Ortmeyer HK, Stefanovic-Racic M, O’Doherty RM. Leptin augments the acute suppressive effects of insulin on hepatic very low-density lipoprotein production in rats. Endocrinology. 2009;150:2169–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Fishman S, Muzumdar RH, Atzmon G, et al. Resistance to leptin action is the major determinant of hepatic triglyceride accumulation in vivo. FASEB J. 2007;21:53–60.

    CAS  PubMed  Google Scholar 

  70. Cohen SM, Werrmann JG, Tota MR. 13C NMR study of the effects of leptin treatment on kinetics of hepatic intermediary metabolism. Proc Natl Acad Sci U S A. 1998;95:7385–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Ferrante Jr AW, Thearle M, Liao T, Leibel RL. Effects of leptin deficiency and short-term repletion on hepatic gene expression in genetically obese mice. Diabetes. 2001;50:2268–78.

    CAS  PubMed  Google Scholar 

  72. Cortes VA, Cautivo KM, Rong S, Garg A, Horton JD, Agarwal AK. Leptin ameliorates insulin resistance and hepatic steatosis in Agpat2-/- lipodystrophic mice independent of hepatocyte leptin receptors. J Lipid Res. 2014;55:276–88.

    CAS  PubMed  Google Scholar 

  73. Shimabukuro M, Koyama K, Chen G, et al. Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc Natl Acad Sci U S A. 1997;94:4637–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Stenger C, Hanse M, Pratte D, et al. Up-regulation of hepatic lipolysis stimulated lipoprotein receptor by leptin: a potential lever for controlling lipid clearance during the postprandial phase. FASEB J. 2010;24:4218–28.

    CAS  PubMed  Google Scholar 

  75. Trak-Smayra V, Paradis V, Massart J, Nasser S, Jebara V, Fromenty B. Pathology of the liver in obese and diabetic ob/ob and db/db mice fed a standard or high-calorie diet. Int J Exp Pathol. 2011;92:413–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Koteish A, Mae DA. Animal models of steatohepatitis. Best Pract Res Clin Gastroenterol. 2002;16:679–90.

    CAS  PubMed  Google Scholar 

  77. Sugihara T, Koda M, Kishina M, et al. Fatty liver Shionogi-ob/ob mouse: a new candidate for a non-alcoholic steatohepatitis model. Hepatol Res. 2013;43:547–56.

    CAS  PubMed  Google Scholar 

  78. Shen J, Sakaida I, Uchida K, Terai S, Okita K. Leptin enhances TNF-alpha production via p38 and JNK MAPK in LPS-stimulated Kupffer cells. Life Sci. 2005;77:1502–15.

    CAS  PubMed  Google Scholar 

  79. Wang J, Leclercq I, Brymora JM, et al. Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology. 2009;137:713–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Li Z, Lin H, Yang S, Diehl AM. Murine leptin deficiency alters Kupffer cell production of cytokines that regulate the innate immune system. Gastroenterology. 2002;123:1304–10.

    CAS  PubMed  Google Scholar 

  81. Cao Q, Mak KM, Lieber CS. Leptin represses matrix metalloproteinase-1 gene expression in LX2 human hepatic stellate cells. J Hepatol. 2007;46:124–33.

    CAS  PubMed  Google Scholar 

  82. Chatterjee S, Ganini D, Tokar EJ, et al. Leptin is key to peroxynitrite-mediated oxidative stress and Kupffer cell activation in experimental non-alcoholic steatohepatitis. J Hepatol. 2013;58:778–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Schroyen B, Guimaraes EL, Dolle L, et al. Leptin-mediated reactive oxygen species production does not significantly affect primary mouse hepatocyte functions in vitro. Eur J Gastroenterol Hepatol. 2012;24:1370–80.

    CAS  PubMed  Google Scholar 

  84. Cao Q, Mak KM, Ren C, Lieber CS. Leptin stimulates tissue inhibitor of metalloproteinase-1 in human hepatic stellate cells: respective roles of the JAK/STAT and JAK-mediated H2O2-dependant MAPK pathways. J Biol Chem. 2004;279:4292–304.

    CAS  PubMed  Google Scholar 

  85. Imajo K, Fujita K, Yoneda M, et al. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 2012;16:44–54.

    CAS  PubMed  Google Scholar 

  86. Saxena NK, Ikeda K, Rockey DC, Friedman SL, Anania FA. Leptin in hepatic fibrosis: evidence for increased collagen production in stellate cells and lean littermates of ob/ob mice. Hepatology. 2002;35:762–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Honda H, Ikejima K, Hirose M, et al. Leptin is required for fibrogenic responses induced by thioacetamide in the murine liver. Hepatology. 2002;36:12–21.

    CAS  PubMed  Google Scholar 

  88. Leclercq IA, Farrell GC, Schriemer R, Robertson GR. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J Hepatol. 2002;37:206–13.

    CAS  PubMed  Google Scholar 

  89. Potter JJ, Rennie-Tankesley L, Mezey E. Influence of leptin in the development of hepatic fibrosis produced in mice by Schistosoma mansoni infection and by chronic carbon tetrachloride administration. J Hepatol. 2003;38:281–8.

    CAS  PubMed  Google Scholar 

  90. Potter JJ, Mezey E. Leptin deficiency reduces but does not eliminate the development of hepatic fibrosis in mice infected with Schistosoma mansoni. Liver. 2002;22:173–7.

    CAS  PubMed  Google Scholar 

  91. Ikejima K, Honda H, Yoshikawa M, et al. Leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals. Hepatology. 2001;34:288–97.

    CAS  PubMed  Google Scholar 

  92. Ikejima K, Takei Y, Honda H, et al. Leptin receptor-mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology. 2002;122:1399–410.

    CAS  PubMed  Google Scholar 

  93. Ding X, Saxena NK, Lin S, Xu A, Srinivasan S, Anania FA. The roles of leptin and adiponectin: a novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology. Am J Pathol. 2005;166:1655–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Sakaida I, Jinhua S, Uchida K, Terai S, Okita K. Leptin receptor-deficient Zucker (fa/fa) rat retards the development of pig serum-induced liver fibrosis with Kupffer cell dysfunction. Life Sci. 2003;73:2491–501.

    CAS  PubMed  Google Scholar 

  95. Kitade M, Yoshiji H, Kojima H, et al. Leptin-mediated neovascularization is a prerequisite for progression of nonalcoholic steatohepatitis in rats. Hepatology. 2006;44:983–91.

    CAS  PubMed  Google Scholar 

  96. Sahai A, Malladi P, Pan X, et al. Obese and diabetic db/db mice develop marked liver fibrosis in a model of nonalcoholic steatohepatitis: role of short-form leptin receptors and osteopontin. Am J Physiol Gastrointest Liver Physiol. 2004;287:G1035–43.

    CAS  PubMed  Google Scholar 

  97. Qamar A, Sheikh SZ, Masud A, et al. In vitro and in vivo protection of stellate cells from apoptosis by leptin. Dig Dis Sci. 2006;51:1697–705.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Zhou J, Lei W, Shen L, Luo HS, Shen ZX. Primary study of leptin and human hepatocellular carcinoma in vitro. World J Gastroenterol. 2008;14:2900–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Potter JJ, Womack L, Mezey E, Anania FA. Transdifferentiation of rat hepatic stellate cells results in leptin expression. Biochem Biophys Res Commun. 1998;244:178–82.

    CAS  PubMed  Google Scholar 

  100. Otte C, Otte JM, Strodthoff D, et al. Expression of leptin and leptin receptor during the development of liver fibrosis and cirrhosis. Exp Clin Endocrinol Diabetes. 2004;112:10–7.

    CAS  PubMed  Google Scholar 

  101. Tang M, Potter JJ, Mezey E. Leptin enhances the effect of transforming growth factor beta in increasing type I collagen formation. Biochem Biophys Res Commun. 2002;297:906–11.

    CAS  PubMed  Google Scholar 

  102. Ikejima K, Lang T, Zhang YJ, et al. Expression of leptin receptors in hepatic sinusoidal cells. Comp Hepatol. 2004;3 Suppl 1:S12.

    Google Scholar 

  103. Penttinen RP, Kobayashi S, Bornstein P. Transforming growth factor beta increases mRNA for matrix proteins both in the presence and in the absence of changes in mRNA stability. Proc Natl Acad Sci U S A. 1988;85:1105–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Dooley S, ten Dijke P. TGF-beta in progression of liver disease. Cell Tissue Res. 2012;347:245–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Choi SS, Syn WK, Karaca GF, et al. Leptin promotes the myofibroblastic phenotype in hepatic stellate cells by activating the hedgehog pathway. J Biol Chem. 2010;285:36551–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Saxena NK, Saliba G, Floyd JJ, Anania FA. Leptin induces increased alpha2(I) collagen gene expression in cultured rat hepatic stellate cells. J Cell Biochem. 2003;89:311–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Niu L, Wang X, Li J, et al. Leptin stimulates alpha1(I) collagen expression in human hepatic stellate cells via the phosphatidylinositol 3-kinase/Akt signalling pathway. Liver Int. 2007;27:1265–72.

    CAS  PubMed  Google Scholar 

  108. Cao Q, Mak KM, Lieber CS. Leptin enhances alpha1(I) collagen gene expression in LX-2 human hepatic stellate cells through JAK-mediated H2O2-dependent MAPK pathways. J Cell Biochem. 2006;97:188–97.

    CAS  PubMed  Google Scholar 

  109. Aleffi S, Petrai I, Bertolani C, et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology. 2005;42:1339–48.

    CAS  PubMed  Google Scholar 

  110. Saxena NK, Titus MA, Ding X, et al. Leptin as a novel profibrogenic cytokine in hepatic stellate cells: mitogenesis and inhibition of apoptosis mediated by extracellular regulated kinase (Erk) and Akt phosphorylation. FASEB J. 2004;18:1612–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Jiang JX, Mikami K, Shah VH, Torok NJ. Leptin induces phagocytosis of apoptotic bodies by hepatic stellate cells via a Rho guanosine triphosphatase-dependent mechanism. Hepatology. 2008;48:1497–505.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Lang T, Ikejima K, Yoshikawa M, et al. Leptin facilitates proliferation of hepatic stellate cells through up-regulation of platelet-derived growth factor receptor. Biochem Biophys Res Commun. 2004;323:1091–5.

    CAS  PubMed  Google Scholar 

  113. Si HF, Li J, Lu XW, Jin Y. Suppressive effects of leflunomide on leptin-induced collagen I production involved in hepatic stellate cell proliferation. Exp Biol Med (Maywood). 2007;232:427–36.

    CAS  Google Scholar 

  114. Aller R, De Luis DA, Izaola O, et al. Lys656Asn polymorphism of leptin receptor, leptin levels and insulin resistance in patients with non alcoholic fatty liver disease. Eur Rev Med Pharmacol Sci. 2012;16:335–41.

    CAS  PubMed  Google Scholar 

  115. Ayonrinde OT, Olynyk JK, Beilin LJ, et al. Gender-specific differences in adipose distribution and adipocytokines influence adolescent nonalcoholic fatty liver disease. Hepatology. 2011;53:800–9.

    CAS  PubMed  Google Scholar 

  116. Lebensztejn DM, Wojtkowska M, Skiba E, Werpachowska I, Tobolczyk J, Kaczmarski M. Serum concentration of adiponectin, leptin and resistin in obese children with non-alcoholic fatty liver disease. Adv Med Sci. 2009;54:177–82.

    CAS  PubMed  Google Scholar 

  117. Lemoine M, Ratziu V, Kim M, et al. Serum adipokine levels predictive of liver injury in non-alcoholic fatty liver disease. Liver Int. 2009;29:1431–8.

    CAS  PubMed  Google Scholar 

  118. Machado MV, Coutinho J, Carepa F, Costa A, Proenca H, Cortez-Pinto H. How adiponectin, leptin, and ghrelin orchestrate together and correlate with the severity of nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2012;24:1166–72.

    CAS  PubMed  Google Scholar 

  119. Uygun A, Kadayifci A, Yesilova Z, et al. Serum leptin levels in patients with nonalcoholic steatohepatitis. Am J Gastroenterol. 2000;95:3584–9.

    CAS  PubMed  Google Scholar 

  120. Wong VW, Hui AY, Tsang SW, et al. Metabolic and adipokine profile of Chinese patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2006;4:1154–61.

    CAS  PubMed  Google Scholar 

  121. Chitturi S, Farrell G, Frost L, et al. Serum leptin in NASH correlates with hepatic steatosis but not fibrosis: a manifestation of lipotoxicity? Hepatology. 2002;36:403–9.

    CAS  PubMed  Google Scholar 

  122. Singh DK, Sakhuja P, Rastogi A, Singh A, Gondal R, Sarin SK. Serum leptin levels correlate with body mass index but not with histologic disease severity in Indian patients with non-alcoholic steatohepatitis: a pilot study. Indian J Med Res. 2013;137:986–7.

    PubMed Central  PubMed  Google Scholar 

  123. Swellam M, Hamdy N. Association of nonalcoholic fatty liver disease with a single nucleotide polymorphism on the gene encoding leptin receptor. IUBMB Life. 2012;64:180–6.

    CAS  PubMed  Google Scholar 

  124. Nobili V, Manco M, Ciampalini P, et al. Leptin, free leptin index, insulin resistance and liver fibrosis in children with non-alcoholic fatty liver disease. Eur J Endocrinol. 2006;155:735–43.

    CAS  PubMed  Google Scholar 

  125. Serin E, Ozer B, Gumurdulu Y, Kayaselcuk F, Kul K, Boyacioglu S. Serum leptin level can be a negative marker of hepatocyte damage in nonalcoholic fatty liver. J Gastroenterol. 2003;38:471–6.

    CAS  PubMed  Google Scholar 

  126. Chalasani N, Crabb DW, Cummings OW, et al. Does leptin play a role in the pathogenesis of human nonalcoholic steatohepatitis? Am J Gastroenterol. 2003;98:2771–6.

    CAS  PubMed  Google Scholar 

  127. Iorio R, Sepe A, Giannattasio A, et al. Immune phenotype and serum leptin in children with obesity-related liver disease. J Clin Endocrinol Metab. 2006;91:341–4.

    CAS  PubMed  Google Scholar 

  128. Kashyap SR, Diab DL, Baker AR, et al. Triglyceride levels and not adipokine concentrations are closely related to severity of nonalcoholic fatty liver disease in an obesity surgery cohort. Obesity (Silver Spring). 2009;17:1696–701.

    CAS  Google Scholar 

  129. Le D, Marks D, Lyle E, et al. Serum leptin levels, hepatic leptin receptor transcription, and clinical predictors of non-alcoholic steatohepatitis in obese bariatric surgery patients. Surg Endosc. 2007;21:1593–9.

    CAS  PubMed  Google Scholar 

  130. Boyraz M, Cekmez F, Karaoglu A, Cinaz P, Durak M, Bideci A. Serum adiponectin, leptin, resistin and RBP4 levels in obese and metabolic syndrome children with nonalcoholic fatty liver disease. Biomark Med. 2013;7:737–45.

    CAS  PubMed  Google Scholar 

  131. Musso G, Gambino R, Durazzo M, et al. Adipokines in NASH: postprandial lipid metabolism as a link between adiponectin and liver disease. Hepatology. 2005;42:1175–83.

    CAS  PubMed  Google Scholar 

  132. Nakamuta M, Tada S, Uchimura K, et al. Serum leptin levels in patients with nonalcoholic chronic liver disease. Hepatogastroenterology. 2001;48:527–32.

    CAS  PubMed  Google Scholar 

  133. Pagano C, Soardo G, Esposito W, et al. Plasma adiponectin is decreased in nonalcoholic fatty liver disease. Eur J Endocrinol. 2005;152:113–8.

    CAS  PubMed  Google Scholar 

  134. Aller R, de Luis DA, Fernandez L, et al. Influence of insulin resistance and adipokines in the grade of steatosis of nonalcoholic fatty liver disease. Dig Dis Sci. 2008;53:1088–92.

    CAS  PubMed  Google Scholar 

  135. Argentou M, Tiniakos DG, Karanikolas M, et al. Adipokine serum levels are related to liver histology in severely obese patients undergoing bariatric surgery. Obes Surg. 2009;19:1313–23.

    PubMed  Google Scholar 

  136. Fitzpatrick E, Dew TK, Quaglia A, Sherwood RA, Mitry RR, Dhawan A. Analysis of adipokine concentrations in paediatric non-alcoholic fatty liver disease. Pediatr Obes. 2012;7:471–9.

    CAS  PubMed  Google Scholar 

  137. Medici V, Ali MR, Seo S, et al. Increased soluble leptin receptor levels in morbidly obese patients with insulin resistance and nonalcoholic fatty liver disease. Obesity (Silver Spring). 2010;18:2268–73.

    CAS  Google Scholar 

  138. Nakao K, Nakata K, Ohtsubo N, et al. Association between nonalcoholic fatty liver, markers of obesity, and serum leptin level in young adults. Am J Gastroenterol. 2002;97:1796–801.

    CAS  PubMed  Google Scholar 

  139. Wong VW, Wong GL, Choi PC, et al. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut. 2010;59:969–74.

    PubMed  Google Scholar 

  140. Zelber-Sagi S, Lotan R, Shlomai A, et al. Predictors for incidence and remission of NAFLD in the general population during a seven-year prospective follow-up. J Hepatol. 2012;56:1145–51.

    PubMed  Google Scholar 

  141. Petersen KF, Oral EA, Dufour S, et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest. 2002;109:1345–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Misra A, Garg A. Clinical features and metabolic derangements in acquired generalized lipodystrophy: case reports and review of the literature. Medicine (Baltimore). 2003;82:129–46.

    Google Scholar 

  143. Javor ED, Cochran EK, Musso C, Young JR, Depaoli AM, Gorden P. Long-term efficacy of leptin replacement in patients with generalized lipodystrophy. Diabetes. 2005;54:1994–2002.

    CAS  PubMed  Google Scholar 

  144. Javor ED, Ghany MG, Cochran EK, et al. Leptin reverses nonalcoholic steatohepatitis in patients with severe lipodystrophy. Hepatology. 2005;41:753–60.

    CAS  PubMed  Google Scholar 

  145. Beltrand J, Beregszaszi M, Chevenne D, et al. Metabolic correction induced by leptin replacement treatment in young children with Berardinelli-Seip congenital lipoatrophy. Pediatrics. 2007;120:e291–6.

    PubMed  Google Scholar 

  146. von Schnurbein J, Heni M, Moss A, et al. Rapid improvement of hepatic steatosis after initiation of leptin substitution in a leptin-deficient girl. Horm Res Paediatr. 2013;79:310–7.

    Google Scholar 

  147. Oral EA, Simha V, Ruiz E, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med. 2002;346:570–8.

    CAS  PubMed  Google Scholar 

  148. Simha V, Subramanyam L, Szczepaniak L, et al. Comparison of efficacy and safety of leptin replacement therapy in moderately and severely hypoleptinemic patients with familial partial lipodystrophy of the Dunnigan variety. J Clin Endocrinol Metab. 2012;97:785–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Safar Zadeh E, Lungu AO, Cochran EK, et al. The liver diseases of lipodystrophy: the long-term effect of leptin treatment. J Hepatol. 2013;59:131–7.

    CAS  PubMed  Google Scholar 

  150. Mulligan K, Khatami H, Schwarz JM, et al. The effects of recombinant human leptin on visceral fat, dyslipidemia, and insulin resistance in patients with human immunodeficiency virus-associated lipoatrophy and hypoleptinemia. J Clin Endocrinol Metab. 2009;94:1137–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Kamran F, Rother KI, Cochran E, Safar Zadeh E, Gorden P, Brown RJ. Consequences of stopping and restarting leptin in an adolescent with lipodystrophy. Horm Res Paediatr. 2012;78:320–5.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Klein M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Magkos, F., Fabbrini, E., Klein, S. (2015). Pathogenesis of Hepatic Steatosis and Fibrosis: Role of Leptin. In: Dagogo-Jack, MD, S. (eds) Leptin. Springer, Cham. https://doi.org/10.1007/978-3-319-09915-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09915-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09914-9

  • Online ISBN: 978-3-319-09915-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics