Skip to main content

Fetal Alcohol Exposure and Mammary Tumorigenesis in Offspring: Role of the Estrogen and Insulin-Like Growth Factor Systems

  • Conference paper
  • First Online:
Biological Basis of Alcohol-Induced Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 815))

Abstract

Fetal alcohol spectrum disorders affect a significant number of live births each year, indicating that alcohol consumption during pregnancy is an important public health issue. Environmental exposures and lifestyle choices during pregnancy may affect the offspring’s risk of disease in adulthood, leading to the idea that a woman’s risk of breast cancer may be pre-programmed prior to birth. Exposure of pregnant rats to alcohol increases tumorigenesis in the adult offspring in response to mammary carcinogens. The estrogen and insulin-like growth factor (IGF-I) axes occupy central roles in normal mammary gland development and breast cancer. 17-β estradiol (E2) and IGF-I synergize to regulate formation of terminal end buds and ductal elongation during pubertal development. The intracellular signaling pathways mediated by the estrogen and IGF-I receptors cross-talk at multiple levels through both genomic and non-genomic mechanisms. Several components of the E2 and IGF-I systems are altered in early development in rat offspring exposed to alcohol in utero, therefore, these changes may play a role in the enhanced susceptibility to mammary carcinogens observed in adulthood. Alcohol exposure in utero induces a number of epigenetic alterations in non-mammary tissues in the offspring and other adverse in utero exposures induce epigenetic modifications in the mammary gland. Future studies will determine if fetal alcohol exposure can induce epigenetic modifications in genes that regulate E2/IGF action at key phases of mammary development, ultimately leading to changes in susceptibility to carcinogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nayak RB, Murthy P (2008) Fetal alcohol spectrum disorder. Indian Pediatr 45:977–983

    PubMed  Google Scholar 

  2. Chaudhuri JD (2000) Alcohol and the developing fetus–a review. Med Sci Monit 6:1031–1041

    CAS  PubMed  Google Scholar 

  3. Streissguth AP, Bookstein FL, Barr HM, Sampson PD, O’Malley K, Young JK (2004) Risk factors for adverse life outcomes in fetal alcohol syndrome and fetal alcohol effects. J Dev Behav Pediatr 25:228–238

    PubMed  Google Scholar 

  4. May PA, Gossage JP (2001) Estimating the prevalence of fetal alcohol syndrome. A summary. Alcohol Res Health 25:159–167

    CAS  PubMed  Google Scholar 

  5. U.S. Department of Health and Human Services (2005) US Surgeon General releases advisory on alcohol use in pregnancy. Available at http://www.cdc.gov/ncbddd/fasd/dcouments/sg-advisory.pdf. Accessed Oct. 9, 2013

  6. Center for Disease Control and Prevention (2012) Morbidity and Mortality Weekly Report. Alcohol Use and Binge Drinking Among Women of Childbearing Age – US, 2006–2010, 61(28):534–538

    Google Scholar 

  7. McCarthy FP, O’Keeffe LM, Khashan AS, North RA, Poston L, McCowan LM et al (2013) Association between maternal alcohol consumption in early pregnancy and pregnancy outcomes. Obstet Gynecol 122:830–837

    CAS  PubMed  Google Scholar 

  8. Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF et al (eds) (2013) SEER Cancer Statistics Review, 1975–2010, National Cancer Institute. Bethesda, MD http://seer.cancer.gov/csr/1975_2010/, based on November 2012 SEER data submission, posted to the SEER web site, April 2013

  9. Simpson ER, Brown KA (2013) Minireview: obesity and breast cancer: a tale of inflammation and dysregulated metabolism. Mol Endocrinol 27:715–725

    CAS  PubMed  Google Scholar 

  10. Faupel-Badger JM, Arcaro KF, Balkam JJ, Eliassen AH, Hassiotou F, Lebrilla CB et al (2012) Postpartum remodeling, lactation, and breast cancer risk: summary of a National Cancer Institute-sponsored workshop. J Natl Cancer Inst 105:166–174

    PubMed Central  PubMed  Google Scholar 

  11. Collaborative Group on Hormonal Factors in Breast Cancer (2012) Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118,964 women with breast cancer from 117 epidemiological studies. Lancet Oncol 13:1141–1151

    PubMed Central  Google Scholar 

  12. Smith-Warner SA, Spiegelman D, Yaun SS, van den Brandt PA, Folsom AR, Goldbohm RA et al (1998) Alcohol and breast cancer in women: a pooled analysis of cohort studies. JAMA 279:535–540

    CAS  PubMed  Google Scholar 

  13. Hamajima N, Hirose K, Tajima K, Rohan T, Calle EE, Heath CW Jr et al (2002) Alcohol, tobacco and breast cancer–collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer 87:1234–1245

    CAS  PubMed  Google Scholar 

  14. Chen WY, Rosner B, Hankinson SE, Colditz GA, Willett WC (2011) Moderate alcohol consumption during adult life, drinking patterns, and breast cancer risk. JAMA 306:1884–1890

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Park SY, Kolonel LN, Lim U, White KK, Henderson BE, Wilkens LR (2014) Alcohol consumption and breast cancer risk among women from five ethnic groups with light to moderate intakes: The multiethnic cohort study. Int J Cancer 134(6):1504–1510

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Warren Andersen S, Trentham-Dietz A, Gangnon R, Hampton J, Figueroa J, Skinner H et al (2013) The associations between a polygenic score, reproductive and menstrual risk factors and breast cancer risk. Breast Cancer Res Treat 140:427–434

    PubMed  Google Scholar 

  17. Barker DJ (2007) The origins of the developmental origins theory. J Intern Med 261:412–417

    CAS  PubMed  Google Scholar 

  18. Jones RH, Ozanne SE (2007) Intra-uterine origins of type 2 diabetes. Arch Physiol Biochem 113:25–29

    CAS  PubMed  Google Scholar 

  19. Tang WY, Ho SM (2007) Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord 8:173–182

    PubMed Central  PubMed  Google Scholar 

  20. Simmen FA, Simmen RC (2011) The maternal womb: a novel target for cancer prevention in the era of the obesity pandemic? Eur J Cancer Prev 20:539–548

    PubMed Central  PubMed  Google Scholar 

  21. Trichopoulos D (1990) Hypothesis: does breast cancer originate in utero? Lancet 335:939–940

    CAS  PubMed  Google Scholar 

  22. Hilakivi-Clarke L, de Assis S (2006) Fetal origins of breast cancer. Trends Endocrinol Metab 17:340–348

    CAS  PubMed  Google Scholar 

  23. Soto AM, Vandenberg LN, Maffini MV, Sonnenschein C (2008) Does breast cancer start in the womb? Basic Clin Pharmacol Toxicol 102:125–133

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Hilakivi-Clarke L, Cabanes A, de Assis S, Wang M, Khan G, Shoemaker WJ et al (2004) In utero alcohol exposure increases mammary tumorigenesis in rats. Br J Cancer 90:2225–2231

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Polanco TA, Crismale-Gann C, Reuhl KR, Sarkar DK, Cohick WS (2010) Fetal alcohol exposure increases mammary tumor susceptibility and alters tumor phenotype in rats. Alcohol Clin Exp Res 34:1–9

    Google Scholar 

  26. Polanco TA, Crismale-Gann C, Cohick WS (2011) Alcohol exposure in utero leads to enhanced prepubertal mammary development and alterations in mammary IGF and estradiol systems. Horm Cancer 2:239–248

    CAS  PubMed  Google Scholar 

  27. Latino-Martel P, Chan DS, Druesne-Pecollo N, Barrandon E, Hercberg S, Norat T (2010) Maternal alcohol consumption during pregnancy and risk of childhood leukemia: systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 19:1238–1260

    CAS  PubMed  Google Scholar 

  28. Esserman LJ, Thompson IM Jr, Reid B (2013) Overdiagnosis and overtreatment in cancer: an opportunity for improvement. JAMA 310:797–798

    CAS  PubMed  Google Scholar 

  29. Masso-Welch PA, Darcy KM, Stangle-Castor NC, Ip MM (2000) A developmental atlas of rat mammary gland histology. J Mammary Gland Biol Neoplasia 5:165–185

    CAS  PubMed  Google Scholar 

  30. Gusterson BA, Stein T (2012) Human breast development. Semin Cell Dev Biol 23:567–573

    PubMed  Google Scholar 

  31. Sakakura T, Kusano I, Kusakabe M, Inaguma Y, Nishizuka Y (1987) Biology of mammary fat pad in fetal mouse: capacity to support development of various fetal epithelia in vivo. Development 100:421–430

    CAS  PubMed  Google Scholar 

  32. Balinsky BI (1950) On the prenatal growth of the mammary gland rudiment in the mouse. J Anat 84:227–235

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Propper AY (1978) Wandering epithelial cells in the rabbit embryo milk line. A preliminary scanning electron microscope study. Dev Biol 67:225–231

    CAS  PubMed  Google Scholar 

  34. Hens JR, Wysolmerski JJ (2005) Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res 7:220–224

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Macias H, Hinck L (2012) Mammary gland development. Wiley Interdiscip Rev Dev Biol 1:533–557

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Schiff R, Osborne CK (2005) Endocrinology and hormone therapy in breast cancer: new insight into estrogen receptor-alpha function and its implication for endocrine therapy resistance in breast cancer. Breast Cancer Res 7:205–211

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Levin ER (2005) Integration of the extranuclear and nuclear actions of estrogen. Mol Endocrinol 19:1951–1959

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Liang J, Shang Y (2013) Estrogen and cancer. Annu Rev Physiol 75:225–240

    CAS  PubMed  Google Scholar 

  39. Hammes SR, Levin ER (2011) Minireview: Recent advances in extranuclear steroid receptor actions. Endocrinology 152:4489–4495

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Manavathi B, Dey O, Gajulapalli VN, Bhatia RS, Bugide S, Kumar R (2013) Derailed estrogen signaling and breast cancer: an authentic couple. Endocr Rev 34:1–32

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Daniel CW, Silberstein GB, Strickland P (1987) Direct action of 17 beta-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res 47:6052–6057

    CAS  PubMed  Google Scholar 

  42. Mallepell S, Krust A, Chambon P, Brisken C (2006) Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci U S A 103:2196–2201

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Krege JH, Hodgin JB, Couse JF, Enmark E, Warner M, Mahler JF et al (1998) Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci U S A 95:15677–15682

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Forster C, Makela S, Warri A, Kietz S, Becker D, Hultenby K et al (2002) Involvement of estrogen receptor beta in terminal differentiation of mammary gland epithelium. Proc Natl Acad Sci U S A 99:15578–15583

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Beatson G (1896) On the treatment of inoperable cases of carcinoma of the mamma: suggestions for anew method of treatment, with illustrative cases. Lancet 148:104–107

    Google Scholar 

  46. Schiff R, Chamness GC, Brown PH (2003) Advances in breast cancer treatment and prevention: preclinical studies on aromatase inhibitors and new selective estrogen receptor modulators (SERMs). Breast Cancer Res 5:228–231

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Russo J, Russo IH (2006) The role of estrogen in the initiation of breast cancer. J Steroid Biochem Mol Biol 102:89–96

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Key T, Appleby P, Barnes I, Reeves G (2002) Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 94:606–616

    CAS  PubMed  Google Scholar 

  49. Kaaks R, Rinaldi S, Key TJ, Berrino F, Peeters PH, Biessy C et al (2005) Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer 12:1071–1082

    CAS  PubMed  Google Scholar 

  50. Missmer SA, Eliassen AH, Barbieri RL, Hankinson SE (2004) Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst 96:1856–1865

    CAS  PubMed  Google Scholar 

  51. Key TJ, Appleby PN, Reeves GK, Roddam AW, Helzlsouer KJ, Alberg AJ et al (2011) Circulating sex hormones and breast cancer risk factors in postmenopausal women: reanalysis of 13 studies. Br J Cancer 105:709–722

    CAS  PubMed  Google Scholar 

  52. Britt K (2012) Menarche, menopause, and breast cancer risk. Lancet Oncol 13:1071–1072

    PubMed  Google Scholar 

  53. Yager JD, Davidson NE (2006) Estrogen carcinogenesis in breast cancer. N Engl J Med 354:270–282

    CAS  PubMed  Google Scholar 

  54. Cavalieri E, Rogan E (2006) Catechol quinones of estrogens in the initiation of breast, prostate, and other human cancers: keynote lecture. Ann N Y Acad Sci 1089:286–301

    CAS  PubMed  Google Scholar 

  55. Santen R, Cavalieri E, Rogan E, Russo J, Guttenplan J, Ingle J et al (2009) Estrogen mediation of breast tumor formation involves estrogen receptor-dependent, as well as independent, genotoxic effects. Ann N Y Acad Sci 1155:132–140

    CAS  PubMed  Google Scholar 

  56. Yue W, Wang JP, Li Y, Fan P, Liu G, Zhang N et al (2010) Effects of estrogen on breast cancer development: Role of estrogen receptor independent mechanisms. Int J Cancer 127:1748–1757

    CAS  PubMed  Google Scholar 

  57. LeRoith D, Roberts CT Jr (2003) The insulin-like growth factor system and cancer. Cancer Lett 195:127–137

    CAS  PubMed  Google Scholar 

  58. Kleinberg DL, Wood TL, Furth PA, Lee AV (2009) Growth hormone and insulin-like growth factor-I in the transition from normal mammary development to preneoplastic mammary lesions. Endocr Rev 30:51–74

    CAS  PubMed  Google Scholar 

  59. Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R (2009) Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 30:586–623

    CAS  PubMed  Google Scholar 

  60. Rowzee AM, Ludwig DL, Wood TL (2009) Insulin-like growth factor type 1 receptor and insulin receptor isoform expression and signaling in mammary epithelial cells. Endocrinology 150:3611–3619

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Kleinberg DL, Ruan W (2008) IGF-I, GH, and sex steroid effects in normal mammary gland development. J Mammary Gland Biol Neoplasia 13:353–360

    PubMed  Google Scholar 

  62. Ruan W, Kleinberg DL (1999) Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology 140:5075–5081

    CAS  PubMed  Google Scholar 

  63. Kaplan SA, Cohen P (2007) The somatomedin hypothesis 2007: 50 years later. J Clin Endocrinol Metab 92:4529–4535

    CAS  PubMed  Google Scholar 

  64. Richards RG, Klotz DM, Walker MP, Diaugustine RP (2004) Mammary gland branching morphogenesis is diminished in mice with a deficiency of insulin-like growth factor-I (IGF-I), but not in mice with a liver-specific deletion of IGF-I. Endocrinology 145:3106–3110

    CAS  PubMed  Google Scholar 

  65. Cannata D, Lann D, Wu Y, Elis S, Sun H, Yakar S et al (2010) Elevated circulating IGF-I promotes mammary gland development and proliferation. Endocrinology 151:5751–5761

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Wu Y, Cui K, Miyoshi K, Hennighausen L, Green JE, Setser J et al (2003) Reduced circulating insulin-like growth factor I levels delay the onset of chemically and genetically induced mammary tumors. Cancer Res 63:4384–4388

    CAS  PubMed  Google Scholar 

  67. de Ostrovich KK, Lambertz I, Colby JK, Tian J, Rundhaug JE, Johnston D et al (2008) Paracrine overexpression of insulin-like growth factor-1 enhances mammary tumorigenesis in vivo. Am J Pathol 173:824–834

    PubMed Central  PubMed  Google Scholar 

  68. Beattie J, Allan GJ, Lochrie JD, Flint DJ (2006) Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis. Biochem J 395:1–19

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Marshman E, Green KA, Flint DJ, White A, Streuli CH, Westwood M (2003) Insulin-like growth factor binding protein 5 and apoptosis in mammary epithelial cells. J Cell Sci 116:675–682

    CAS  PubMed  Google Scholar 

  70. Tonner E, Barber MC, Allan GJ, Beattie J, Webster J, Whitelaw CB et al (2002) Insulin-like growth factor binding protein-5 (IGFBP-5) induces premature cell death in the mammary glands of transgenic mice. Development 129:4547–4557

    CAS  PubMed  Google Scholar 

  71. Ruan W, Fahlbusch F, Clemmons DR, Monaco ME, Walden PD, Silva AP et al (2006) SOM230 inhibits insulin-like growth factor-I action in mammary gland development by pituitary independent mechanism: mediated through somatostatin subtype receptor 3? Mol Endocrinol 20:426–436

    CAS  PubMed  Google Scholar 

  72. Allan GJ, Beattie J, Flint DJ (2004) The role of IGFBP-5 in mammary gland development and involution. Domest Anim Endocrinol 27:257–266

    CAS  PubMed  Google Scholar 

  73. Hamelers IH, Steenbergh PH (2003) Interactions between estrogen and insulin-like growth factor signaling pathways in human breast tumor cells. Endocr Relat Cancer 10:331–345

    CAS  PubMed  Google Scholar 

  74. Thorne C, Lee AV (2003) Cross talk between estrogen receptor and IGF signaling in normal mammary gland development and breast cancer. Breast Dis 17:105–114

    CAS  PubMed  Google Scholar 

  75. Bartella V, De Marco P, Malaguarnera R, Belfiore A, Maggiolini M (2012) New advances on the functional cross-talk between insulin-like growth factor-I and estrogen signaling in cancer. Cell Signal 24:1515–1521

    CAS  PubMed  Google Scholar 

  76. Ruan W, Catanese V, Wieczorek R, Feldman M, Kleinberg DL (1995) Estradiol enhances the stimulatory effect of insulin-like growth factor-I (IGF-I) on mammary development and growth hormone-induced IGF-I messenger ribonucleic acid. Endocrinology 136:1296–1302

    CAS  PubMed  Google Scholar 

  77. Clarke RB, Howell A, Potten CS, Anderson E (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57:4987–4991

    CAS  PubMed  Google Scholar 

  78. Zeps N, Bentel JM, Papadimitriou JM, D’Antuono MF, Dawkins HJ (1998) Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth. Differentiation 62:221–226

    CAS  PubMed  Google Scholar 

  79. Russo J, Ao X, Grill C, Russo IH (1999) Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res Treat 53:217–227

    CAS  PubMed  Google Scholar 

  80. Clarke RB, Howell A, Anderson E (1997) Type I insulin-like growth factor receptor gene expression in normal human breast tissue treated with oestrogen and progesterone. Br J Cancer 75:251–257

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Stewart AJ, Johnson AD, May FEB, Westley BR (1990) Role of the insulin-like growth factors and the type-I insulin-like growth factor receptor in the estrogen-stimulated proliferation of human breast cancer cells. J Biol Chem 265:21172–21178

    CAS  PubMed  Google Scholar 

  82. Lee AV, Darbre P, King RJ (1994) Processing of insulin-like growth factor-II (IGF-II) by human breast cancer cells. Mol Cell Endocrinol 99:211–220

    CAS  PubMed  Google Scholar 

  83. Umayahara Y, Kawamori R, Watada H, Imano E, Iwama N, Morishima T et al (1994) Estrogen regulation of the insulin-like growth factor I gene transcription involves an AP-1 enhancer. J Biol Chem 269:16433–16442

    CAS  PubMed  Google Scholar 

  84. Lee AV, Jackson JG, Gooch JL, Hilsenbeck SG, Coronado-Heinsohn E, Osborne CK et al (1999) Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo. Mol Endocrinol 13:787–796

    CAS  PubMed  Google Scholar 

  85. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H et al (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–1494

    CAS  PubMed  Google Scholar 

  86. Lee AV, Weng CN, Jackson JG, Yee D (1997) Activation of estrogen receptor-mediated gene transcription by IGF-I in human breast cancer cells. J Endocrinol 152:39–47

    CAS  PubMed  Google Scholar 

  87. Cascio S, Bartella V, Garofalo C, Russo A, Giordano A, Surmacz E (2007) Insulin-like growth factor 1 differentially regulates estrogen receptor-dependent transcription at estrogen response element and AP-1 sites in breast cancer cells. J Biol Chem 282:3498–3506

    CAS  PubMed  Google Scholar 

  88. Becker MA, Ibrahim YH, Cui X, Lee AV, Yee D (2011) The IGF pathway regulates ERalpha through a S6K1-dependent mechanism in breast cancer cells. Mol Endocrinol 25:516–528

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Kahlert S, Nuedling S, van Eickels M, Vetter H, Meyer R, Grohe C (2000) Estrogen receptor alpha rapidly activates the IGF-1 receptor pathway. J Biol Chem 275:18447–18453

    CAS  PubMed  Google Scholar 

  90. Song RX, Chen Y, Zhang Z, Bao Y, Yue W, Wang JP et al (2009) Estrogen utilization of IGF-1-R and EGF-R to signal in breast cancer cells. J Steroid Biochem Mol Biol 118:219–230

    PubMed Central  PubMed  Google Scholar 

  91. Prossnitz ER, Barton M (2011) The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol 7:715–726

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Kang L, Zhang X, Xie Y, Tu Y, Wang D, Liu Z et al (2010) Involvement of estrogen receptor variant ER-alpha36, not GPR30, in nongenomic estrogen signaling. Mol Endocrinol 24:709–721

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Yang Y, Yee D (2012) Targeting insulin and insulin-like growth factor signaling in breast cancer. J Mammary Gland Biol Neoplasia 17:251–261

    PubMed Central  PubMed  Google Scholar 

  94. Pollak M (2012) The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 12:159–169

    CAS  PubMed  Google Scholar 

  95. Zhang X, Ho SM (2011) Epigenetics meets endocrinology. J Mol Endocrinol 46:R11–R32

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Miyatake T, Ueda Y, Nakashima R, Yoshino K, Kimura T, Murata T et al (2007) Down-regulation of insulin-like growth factor binding protein-5 (IGFBP-5): novel marker for cervical carcinogenesis. Int J Cancer 120:2068–2077

    CAS  PubMed  Google Scholar 

  97. Hung PS, Kao SY, Shih YH, Chiou SH, Liu CJ, Chang KW et al (2008) Insulin-like growth factor binding protein-5 (IGFBP-5) suppresses the tumourigenesis of head and neck squamous cell carcinoma. J Pathol 214:368–376

    CAS  PubMed  Google Scholar 

  98. Zhang B, Shozu M, Okada M, Ishikawa H, Kasai T, Murakami K et al (2010) Insulin-like growth factor I enhances the expression of aromatase P450 by inhibiting autophagy. Endocrinology 151:4949–4958

    CAS  PubMed  Google Scholar 

  99. Lan N, Yamashita F, Halpert AG, Sliwowska JH, Viau V, Weinberg J (2009) Effects of prenatal ethanol exposure on hypothalamic-pituitary-adrenal function across the estrous cycle. Alcohol Clin Exp Res 33:1075–1088

    CAS  PubMed  Google Scholar 

  100. Macon MB, Fenton SE (2013) Endocrine disruptors and the breast: early life effects and later life disease. J Mammary Gland Biol Neoplasia 18:43–61

    PubMed Central  PubMed  Google Scholar 

  101. Hilakivi-Clarke L, Clarke R, Onojafe I, Raygada M, Cho E, Lippman M (1997) A maternal diet high in n-6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci U S A 94:9372–9377

    CAS  PubMed Central  PubMed  Google Scholar 

  102. de Assis S, Warri A, Cruz MI, Laja O, Tian Y, Zhang B et al (2012) High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring. Nat Commun 3:1053

    PubMed Central  PubMed  Google Scholar 

  103. Braun MM, Ahlbom A, Floderus B, Brinton LA, Hoover RN (1995) Effect of twinship on incidence of cancer of the testis, breast, and other sites (Sweden). Cancer Causes Control 6:519–524

    CAS  PubMed  Google Scholar 

  104. Palmer JR, Hatch EE, Rosenberg CL, Hartge P, Kaufman RH, Titus-Ernstoff L et al (2002) Risk of breast cancer in women exposed to diethylstilbestrol in utero: preliminary results (United States). Cancer Causes Control 13:753–758

    PubMed  Google Scholar 

  105. Dalvai M, Bystricky K (2010) The role of histone modifications and variants in regulating gene expression in breast cancer. J Mammary Gland Biol Neoplasia 15:19–33

    PubMed  Google Scholar 

  106. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Alves CP, Fonseca AS, Muys BR, de Barros ELBR, Burger MC, de Souza JE et al (2013) The lincRNA Hotair is required for epithelial-to-mesenchymal transition and stemness maintenance of cancer cells lines. Stem Cells 31:2827–2832

    CAS  Google Scholar 

  108. Li S, Hursting SD, Davis BJ, McLachlan JA, Barrett JC (2003) Environmental exposure, DNA methylation, and gene regulation: lessons from diethylstilbesterol-induced cancers. Ann N Y Acad Sci 983:161–169

    CAS  PubMed  Google Scholar 

  109. Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Cloos PA, Christensen J, Agger K, Helin K (2008) Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev 22:1115–1140

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Turndrup Pedersen M, Helin K (2010) Histone demethylases in development and disease. Trends Cell Biol 20:662–671

    Google Scholar 

  112. Rodriguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17:330–339

    CAS  PubMed  Google Scholar 

  113. Dolinoy DC, Weidman JR, Jirtle RL (2007) Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol 23:297–307

    CAS  PubMed  Google Scholar 

  114. Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J et al (2009) KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461:415–418

    CAS  PubMed  Google Scholar 

  115. Ungerer M, Knezovich J, Ramsay M (2013) In utero alcohol exposure, epigenetic changes, and their consequences. Alcohol Res 35:37–46

    PubMed Central  PubMed  Google Scholar 

  116. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    CAS  PubMed  Google Scholar 

  117. Kafri T, Ariel M, Brandeis M, Shemer R, Urven L, McCarrey J et al (1992) Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev 6:705–714

    CAS  PubMed  Google Scholar 

  118. Santos F, Dean W (2004) Epigenetic reprogramming during early development in mammals. Reproduction 127:643–651

    CAS  PubMed  Google Scholar 

  119. Verma M, Srivastava S (2002) Epigenetics in cancer: implications for early detection and prevention. Lancet Oncol 3:755–763

    CAS  PubMed  Google Scholar 

  120. Garro AJ, McBeth DL, Lima V, Lieber CS (1991) Ethanol consumption inhibits fetal DNA methylation in mice: implications for the fetal alcohol syndrome. Alcohol Clin Exp Res 15:395–398

    CAS  PubMed  Google Scholar 

  121. Kaminen-Ahola N, Ahola A, Maga M, Mallitt KA, Fahey P, Cox TC et al (2010) Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet 6:e1000811

    PubMed Central  PubMed  Google Scholar 

  122. Downing C, Flink S, Florez-McClure ML, Johnson TE, Tabakoff B, Kechris KJ (2012) Gene expression changes in C57BL/6J and DBA/2J mice following prenatal alcohol exposure. Alcohol Clin Exp Res 36:1519–1529

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Liu Y, Balaraman Y, Wang G, Nephew KP, Zhou FC (2009) Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics 4:500–511

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Stouder C, Somm E, Paoloni-Giacobino A (2011) Prenatal exposure to ethanol: a specific effect on the H19 gene in sperm. Reprod Toxicol 31:507–512

    CAS  PubMed  Google Scholar 

  125. Perkins A, Lehmann C, Lawrence RC, Kelly SJ (2013) Alcohol exposure during development: Impact on the epigenome. Int J Dev Neurosci 31:391–397

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Veazey KJ, Carnahan MN, Muller D, Miranda RC, Golding MC (2013) Alcohol-induced epigenetic alterations to developmentally crucial genes regulating neural stemness and differentiation. Alcohol Clin Exp Res 37:1111–1122

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Bekdash RA, Zhang C, Sarkar DK (2013) Gestational choline supplementation normalized fetal alcohol-induced alterations in histone modifications, DNA methylation, and proopiomelanocortin (POMC) gene expression in beta-endorphin-producing POMC neurons of the hypothalamus. Alcohol Clin Exp Res 37:1133–1142

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS (2010) In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 1:146–155

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Bromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS (2010) Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J 24:2273–2280

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Martinez-Arguelles DB, Papadopoulos V (2010) Epigenetic regulation of the expression of genes involved in steroid hormone biosynthesis and action. Steroids 75:467–476

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Bikle DD (2008) Integrins, insulin like growth factors, and the skeletal response to load. Osteoporos Int 19:1237–1246

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendie S. Cohick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cohick, W.S., Crismale-Gann, C., Stires, H., Katz, T.A. (2015). Fetal Alcohol Exposure and Mammary Tumorigenesis in Offspring: Role of the Estrogen and Insulin-Like Growth Factor Systems. In: Vasiliou, V., Zakhari, S., Seitz, H., Hoek, J. (eds) Biological Basis of Alcohol-Induced Cancer. Advances in Experimental Medicine and Biology, vol 815. Springer, Cham. https://doi.org/10.1007/978-3-319-09614-8_24

Download citation

Publish with us

Policies and ethics