Skip to main content

Induction and Function of Type I IFNs During Chlamydial Infection

  • Chapter
  • First Online:
Bacterial Activation of Type I Interferons
  • 521 Accesses

Summary

Chlamydia trachomatis is an obligate intracellular pathogen and a leading cause of sexually transmitted bacterial infection in the world. The first step in the host immune response to chlamydial infection is recognition of conserved microbial markers on Chlamydia spp. by host pathogen recognition receptors (PRRs) on epithelial cells. This innate immune recognition leads to a host inflammatory response, a major mediator of the oviduct disease during C. trachomatis genital infection. Type I IFNs are rapidly induced in response to chlamydial infection and have been shown to be bactericidal during in vitro infection. However, during in vivo infection, IFNAR signaling exacerbates oviduct pathology and is not protective to the host. This chapter summarizes the cooperative recognition of chlamydiae by the PRRs to induce type I IFNs, the downstream effect of these cytokines in pathogenesis, and the candidate chlamydial effectors initiating these responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tabbara KF (2001) Trachoma: a review. J Chemother 13(Suppl 1):18–22

    PubMed  Google Scholar 

  2. Mardh PA (2004) Tubal factor infertility, with special regard to chlamydial salpingitis. Curr Opin Infect Dis 17(1):49–52

    Article  PubMed  Google Scholar 

  3. Parks KS et al (1997) Spontaneous clearance of Chlamydia trachomatis infection in untreated patients. Sex Transm Dis 24(4):229–235

    Article  PubMed  CAS  Google Scholar 

  4. Morre SA et al (2002) The natural course of asymptomatic Chlamydia trachomatis infections: 45% clearance and no development of clinical PID after one-year follow-up. Int J STD AIDS 13(Suppl 2):12–18

    Article  PubMed  Google Scholar 

  5. Woolridge RL et al (1967) Long-term follow-up of the initial (1959–1960) trachoma vaccine field trial on Taiwan. Am J Ophthalmol 63(5)Suppl:1650–1655

    Google Scholar 

  6. Hillis SD et al (1997) Recurrent chlamydial infections increase the risks of hospitalization for ectopic pregnancy and pelvic inflammatory disease. Am J Obstet Gynecol 176(1 Pt 1):103–107

    Article  PubMed  CAS  Google Scholar 

  7. Kimani J et al (1996) Risk factors for Chlamydia trachomatis pelvic inflammatory disease among sex workers in Nairobi, Kenya. J Infect Dis 173(6):1437–1444

    Article  PubMed  CAS  Google Scholar 

  8. Wyrick PB (2000) Intracellular survival by Chlamydia. Cell Microbiol 2(4):275–282

    Article  PubMed  CAS  Google Scholar 

  9. Bavoil PM, Hsia R, Ojcius DM (2000) Closing in on Chlamydia and its intracellular bag of tricks. Microbiology 146(Pt 11):2723–2731

    PubMed  CAS  Google Scholar 

  10. Eissenberg LG, Wyrick PB (1981) Inhibition of phagolysosome fusion is localized to Chlamydia psittaci-laden vacuoles. Infect Immun 32(2):889–896

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Heinzen RA et al (1996) Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect Immun 64(3):796–809

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Scidmore M, Fischer E, Hackstadt T (1996) Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J Cell Biol 134(2):363–374

    Article  PubMed  CAS  Google Scholar 

  13. Grieshaber NA et al (2004) Chlamydial histone-DNA interactions are disrupted by a metabolite in the methylerythritol phosphate pathway of isoprenoid biosynthesis. Proc Natl Acad Sci U S A 101(19):7451–7456

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Hatch TP, Allan I, Pearce JH (1984) Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp. J Bacteriol 157(1):13–20

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Hatch TP, Miceli M, Sublett JE (1986) Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis. J Bacteriol 165(2):379–385

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Hackstadt T, Scidmore MA, Rockey DD (1995) Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci U S A 92(11):4877–4881

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Hackstadt T et al (1996) Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J 15(5):964–977

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Scidmore MA et al (1996) Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry. Infect Immun 64(12):5366–5372

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Hybiske K, Stephens RS (2007) Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc Natl Acad Sci U S A 104(27):11430–11435

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Rasmussen SJ et al (1997) Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J Clin Invest 99(1):77–87

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Rank RG et al (2010) Host chemokine and cytokine response in the endocervix within the first developmental cycle of Chlamydia muridarum. Infect Immun 78(1):536–544

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Barron AL et al (1981) A new animal model for the study of Chlamydia trachomatis genital infections: infection of mice with the agent of mouse pneumonitis. J Infect Dis 143(1):63–66

    Article  PubMed  CAS  Google Scholar 

  23. Rank RG et al (2008) Chlamydiae and polymorphonuclear leukocytes: unlikely allies in the spread of chlamydial infection. FEMS Immunol Med Microbiol 54(1):104–113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Imtiaz MT et al (2007) A role for matrix metalloproteinase-9 in pathogenesis of urogenital Chlamydia muridarum infection in mice. Microbes Infect 9(14–15):1561–1566

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Lee HY et al (2010) A role for CXC chemokine receptor-2 in the pathogenesis of urogenital Chlamydia muridarum infection in mice. FEMS Immunol Med Microbiol 60(1):49–56

    Article  PubMed  CAS  Google Scholar 

  26. Frazer LC et al (2011) Enhanced neutrophil longevity and recruitment contribute to the severity of oviduct pathology during Chlamydia muridarum infection. Infect Immun 79(10):4029–4041

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Darville T et al (2003) Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J Immunol 171(11):6187–6197

    Article  PubMed  CAS  Google Scholar 

  28. Nagarajan UM et al (2008) Type I interferon signaling exacerbates Chlamydia muridarum genital infection in a murine model. Infect Immun 76(10):4642–4648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Nagarajan UM et al (2012) Significant role of IL-1 signaling, but limited role of inflammasome activation, in oviduct pathology during Chlamydia muridarum genital infection. J Immunol 188(6):2866–2875

    Article  PubMed  CAS  Google Scholar 

  30. Prantner D et al (2011) Interferon regulatory transcription factor 3 protects mice from uterine horn pathology during Chlamydia muridarum genital infection. Infect Immun 79(10):3922–3933

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Prantner D et al (2009) Critical role for interleukin-1beta (IL-1beta) during Chlamydia muridarum genital infection and bacterial replication-independent secretion of IL-1beta in mouse macrophages. Infect Immun 77(12):5334–5346

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Cheng W et al (2008) Caspase-1 contributes to Chlamydia trachomatis-induced upper urogenital tract inflammatory pathologies without affecting the course of infection. Infect Immun 76(2):515–522

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Murthy AK et al (2011) Tumor necrosis factor alpha production from CD8+ T cells mediates oviduct pathological sequelae following primary genital Chlamydia muridarum infection. Infect Immun 79(7):2928–2935

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Rank RG, Soderberg LS, Barron AL (1985) Chronic chlamydial genital infection in congenitally athymic nude mice. Infect Immun 48(3):847–849

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Rank RG, Barron AL (1983) Effect of antithymocyte serum on the course of chlamydial genital infection in female guinea pigs. Infect Immun 41(2):876–879

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Rank RG et al (1992) Effect of gamma interferon on resolution of murine chlamydial genital infection. Infect Immun 60(10):4427–4429

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Cotter TW et al (1997) Dissemination of Chlamydia trachomatis chronic genital tract infection in gamma interferon gene knockout mice. Infect Immun 65(6):2145–2152

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Johansson M et al (1997) Studies in knockout mice reveal that anti-chlamydial protection requires TH1 cells producing IFN-gamma: is this true for humans? Scand J Immunol 46(6):546–552

    Article  PubMed  CAS  Google Scholar 

  39. Johnson RM (2004) Murine oviduct epithelial cell cytokine responses to Chlamydia muridarum infection include interleukin-12-p70 secretion. Infect Immun 72(7):3951–3960

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Rothfuchs AG et al (2001) IFN-alpha beta-dependent, IFN-gamma secretion by bone marrow-derived macrophages controls an intracellular bacterial infection. J Immunol 167(11):6453–6461

    Article  PubMed  CAS  Google Scholar 

  41. Nagarajan UM et al (2005) Chlamydia trachomatis induces expression of IFN-gamma-inducible protein 10 and IFN-beta independent of TLR2 and TLR4, but largely dependent on MyD88. J Immunol 175(1):450–460

    Article  PubMed  CAS  Google Scholar 

  42. Devitt A et al (1996) Induction of alpha/beta interferon and dependent nitric oxide synthesis during Chlamydia trachomatis infection of McCoy cells in the absence of exogenous cytokine. Infect Immun 64(10):3951–3956

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Shaw JH et al (2001) Expression of genes encoding Th1 cell-activating cytokines and lymphoid homing chemokines by chlamydia-pulsed dendritic cells correlates with protective immunizing efficacy. Infect Immun 69(7):4667–4672

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Wolf K, Fields KA (2013) Chlamydia pneumoniae impairs the innate immune response in infected epithelial cells by targeting TRAF3. J Immunol 190(4):1695–1701

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. de la Maza LM et al (1985) Interferon-induced inhibition of Chlamydia trachomatis: dissociation from antiviral and antiproliferative effects. Infect Immun 47(3):719–722

    PubMed  PubMed Central  Google Scholar 

  46. Carlin JM, Weller JB (1995) Potentiation of interferon-mediated inhibition of Chlamydia infection by interleukin-1 in human macrophage cultures. Infect Immun 63(5):1870–1875

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Shemer-Avni Y, Wallach D, Sarov I (1988) Inhibition of Chlamydia trachomatis growth by recombinant tumor necrosis factor. Infect Immun 56(9):2503–2506

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Rothermel CD, Byrne GI, Havell EA (1983) Effect of interferon on the growth of Chlamydia trachomatis in mouse fibroblasts (L cells). Infect Immun 39(1):362–370

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Qiu H et al (2008) Type I IFNs enhance susceptibility to Chlamydia muridarum lung infection by enhancing apoptosis of local macrophages. J Immunol 181(3):2092–2102

    Article  PubMed  CAS  Google Scholar 

  50. Fung KY et al (2013) Interferon-epsilon protects the female reproductive tract from viral and bacterial infection. Science 339(6123):1088–1092

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Hermant P et al (2013) IFN-epsilon is constitutively expressed by cells of the reproductive tract and is inefficiently secreted by fibroblasts and cell lines. PLoS One 8(8):e71320

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Nagai T et al (2003) Timing of IFN-beta exposure during human dendritic cell maturation and naive Th cell stimulation has contrasting effects on Th1 subset generation: a role for IFN-beta-mediated regulation of IL-12 family cytokines and IL-18 in naive Th cell differentiation. J Immunol 171(10):5233–5243

    Article  PubMed  CAS  Google Scholar 

  53. Tough DF, Borrow P, Sprent J (1996) Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 272(5270):1947–1950

    Article  PubMed  CAS  Google Scholar 

  54. Belardelli F et al (2002) Interferon-alpha in tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13(2):119–134

    Article  PubMed  CAS  Google Scholar 

  55. Heise MT et al (1998) Murine cytomegalovirus infection inhibits IFN gamma-induced MHC class II expression on macrophages: the role of type I interferon. Virology 241(2):331–344

    Article  PubMed  CAS  Google Scholar 

  56. Lu HT et al (1995) Interferon (IFN) beta acts downstream of IFN-gamma-induced class II transactivator messenger RNA accumulation to block major histocompatibility complex class II gene expression and requires the 48-kD DNA-binding protein, ISGF3-gamma. J Exp Med 182(5):1517–1525

    Article  PubMed  CAS  Google Scholar 

  57. Devajyothi C et al (1993) Inhibition of interferon-gamma-induced major histocompatibility complex class II gene transcription by interferon-beta and type beta 1 transforming growth factor in human astrocytoma cells. Definition of cis-element. J Biol Chem 268(25):18794–18800

    PubMed  CAS  Google Scholar 

  58. Fujita H et al (2005) Type I interferons inhibit maturation and activation of mouse Langerhans cells. J Invest Dermatol 125(1):126–133

    Article  PubMed  CAS  Google Scholar 

  59. Gautier G et al (2005) A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J Exp Med 201(9):1435–1446

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. McRae BL, Beilfuss BA, van Seventer GA (2000) IFN-{beta} differentially regulates CD40-induced cytokine secretion by human dendritic cells. J Immunol 164(1):23–28

    Google Scholar 

  61. Byrnes AA, McArthur JC, Karp CL (2002) Interferon-beta therapy for multiple sclerosis induces reciprocal changes in interleukin-12 and interleukin-10 production. Ann Neurol 51(2):165–174

    Article  PubMed  CAS  Google Scholar 

  62. Guarda G et al (2011) Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34(2):213–223

    Article  PubMed  CAS  Google Scholar 

  63. Stetson DB, Medzhitov R (2006) Type I interferons in host defense. Immunity 25(3):373–381

    Article  PubMed  CAS  Google Scholar 

  64. Tapping RI et al (2000) Toll-like receptor 4, but not toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. J Immunol 165(10):5780–5787

    Article  PubMed  CAS  Google Scholar 

  65. Heine H et al (2003) Endotoxic activity and chemical structure of lipopolysaccharides from Chlamydia trachomatis serotypes E and L2 and Chlamydophila psittaci 6BC. Eur J Biochem 270(3):440–450

    Article  PubMed  CAS  Google Scholar 

  66. Rund S et al (1999) Structural analysis of the lipopolysaccharide from Chlamydia trachomatis serotype L2. J Biol Chem 274(24):16819–16824

    Article  PubMed  CAS  Google Scholar 

  67. Erridge C et al (2004) Lipopolysaccharides of Bacteroides fragilis, Chlamydia trachomatis and Pseudomonas aeruginosa signal via toll-like receptor 2. J Med Microbiol 53(Pt 8):735–740

    Article  PubMed  CAS  Google Scholar 

  68. Bulut Y et al (2002) Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 168(3):1435–1440

    Article  PubMed  CAS  Google Scholar 

  69. Prantner D, Darville T, Nagarajan UM (2010) Stimulator of IFN gene is critical for induction of IFN-beta during Chlamydia muridarum infection. J Immunol 184(5):2551–2560

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Barker JR et al (2013) STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. mBio 4(3)

    Google Scholar 

  71. Zhang Y, Yeruva L, Marinov A, Prantner D, Wyrick PB, Lupashin V, Nagarajan UM (2014) The DNA Sensor, Cyclic GMP-AMP Synthase, Is Essential for Induction of IFN-β during Chlamydia trachomatis Infection. J Immunol Sep 1;193(5):2394–404

    Google Scholar 

  72. Buss C et al (2010) Essential role of mitochondrial antiviral signaling, IFN regulatory factor (IRF)3, and IRF7 in Chlamydophila pneumoniae-mediated IFN-beta response and control of bacterial replication in human endothelial cells. J Immunol 184(6):3072–3078

    Article  PubMed  CAS  Google Scholar 

  73. Saha SK et al (2006) Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J 25(14):3257–3263

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Derbigny WA et al (2011) The Chlamydia muridarum-induced IFN-beta response is TLR3-dependent in murine oviduct epithelial cells. J Immunol 185(11):6689–6697

    Article  Google Scholar 

  75. Yang P et al (2010) The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol 11(6):487–494

    Article  PubMed  CAS  Google Scholar 

  76. Soulat D et al (2006) Cytoplasmic Listeria monocytogenes stimulates IFN-beta synthesis without requiring the adapter protein MAVS. FEBS Lett 580(9):2341–2346

    Article  PubMed  CAS  Google Scholar 

  77. Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461(7265):788–792

    Article  PubMed  CAS  Google Scholar 

  78. Crimmins GT et al (2008) Listeria monocytogenes multidrug resistance transporters activate a cytosolic surveillance pathway of innate immunity. Proc Natl Acad Sci U S A 105(29):10191–10196

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Ablasser A et al (2013) Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503(7477):530–534

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Wu J et al (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339(6121):826–830

    Article  PubMed  CAS  Google Scholar 

  81. Zhang X et al (2013) Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 51(2):226–235

    Article  PubMed  CAS  Google Scholar 

  82. Cavlar T et al (2013) Species-specific detection of the antiviral small-molecule compound CMA by STING. EMBO J 32(10):1440–1450

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Conlon J et al (2013) Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J Immunol 190(10):5216–5225

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Gao P et al (2013) Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154(4):748–762

    Article  PubMed  CAS  Google Scholar 

  85. Manzanillo PS et al (2012) Mycobacterium Tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11(5):469–480

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Stetson DB, Medzhitov R (2006) Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24(1):93–103

    Article  PubMed  CAS  Google Scholar 

  87. Roux CM et al (2007) Brucella requires a functional type IV secretion system to elicit innate immune responses in mice. Cell Microbiol 9(7):1851–1869

    Article  PubMed  CAS  Google Scholar 

  88. Stanley SA et al (2007) The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol 178(5):3143–3152

    Article  PubMed  CAS  Google Scholar 

  89. Prantner D, Nagarajan UM (2009) Role for the chlamydial type III secretion apparatus in host cytokine expression. Infect Immun 77(1):76–84

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Wilson DP et al (2006) Type III secretion, contact-dependent model for the intracellular development of chlamydia. Bull Math Biol 68(1):161–178

    Article  PubMed  CAS  Google Scholar 

  91. Dumoux M et al (2012) Chlamydiae assemble a pathogen synapse to hijack the host endoplasmic reticulum. Traffic 13(12):1612–1627

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Giles DK, Wyrick PB (2008) Trafficking of chlamydial antigens to the endoplasmic reticulum of infected epithelial cells. Microbes Infect 10:1494–1503

    Google Scholar 

  93. Fan T et al (1998) Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med 187(4):487–496

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Silins I et al (2005) Chlamydia trachomatis infection and persistence of human papillomavirus. Int J Cancer 116(1):110–115

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma M. Nagarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nagarajan, U.M. (2014). Induction and Function of Type I IFNs During Chlamydial Infection. In: Parker, D. (eds) Bacterial Activation of Type I Interferons. Springer, Cham. https://doi.org/10.1007/978-3-319-09498-4_9

Download citation

Publish with us

Policies and ethics