Skip to main content

RNAi-Based Nano-Oncologicals: Delivery and Clinical Applications

  • Chapter
  • First Online:
Nano-Oncologicals

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

RNA-modulating nanodrugs triggering RNA interference (RNAi) such as small interfering RNA (siRNA), microRNA (miRNA), or their counteracting antagomirs have the potential to treat an extensive range of diseases, including cancer. The delivery of these small therapeutic nucleic acids is still a major challenge. RNA biodegradation and rapid clearance from systemic circulation, immune responses, and weak targeting to the disease tissue are obstacles to be addressed. For successful delivery, several strategies have been developed in the last years. Chemical modifications of RNA nucleotides and oligonucleotide backbones have been shown to improve stability and to reduce immunogenicity. In addition, cationic polymers or lipid-based systems may serve as delivery vesicles to protect and to transport the RNAi-modulating nucleic acid to its site of action but still require further improvements. Sequence-defined oligomers can be designed which combine multifunctionality with precision. Functional domains for increased binding of the nucleic acid, receptor targeting and protection of polyplexes against undesired interactions, or enhancing the endosomal escape into the cytosol can be assembled into potent and precise nucleic acid carriers. First RNAi based drugs have recently entered human cancer clinical trials and show in several cancer types encouraging hints for efficacy in the absence of toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aigner A (2006) Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J Biotechnol 124(1):12–25

    Article  PubMed  CAS  Google Scholar 

  • Aleku M, Schulz P, Keil O, Santel A, Schaeper U, Dieckhoff B, Janke O, Endruschat J, Durieux B, Roder N, Loffler K, Lange C, Fechtner M, Mopert K, Fisch G, Dames S, Arnold W, Jochims K, Giese K, Wiedenmann B, Scholz A, Kaufmann J (2008) Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res 68(23):9788–9798. doi:10.1158/0008-5472.CAN-08-2428

    Article  PubMed  CAS  Google Scholar 

  • Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27(15):2128–2136. doi:10.1038/sj.onc.1210856

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bartlett DW, Davis ME (2006) Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 34(1):322–333

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Behlke MA (2006) Progress towards in vivo use of siRNAs. Mol Ther 13(4):644–670

    Article  PubMed  CAS  Google Scholar 

  • Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J, Marshall WS, Khvorova A (2006) 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3(3):199–204. doi:10.1038/nmeth854

    Article  PubMed  CAS  Google Scholar 

  • Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, Taccioli C, Croce CM (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297(17):1901–1908. doi:10.1001/jama.297.17.1901

    Article  PubMed  CAS  Google Scholar 

  • Bolcato-Bellemin AL, Bonnet ME, Creusat G, Erbacher P, Behr JP (2007) Sticky overhangs enhance siRNA-mediated gene silencing. Proc Natl Acad Sci U S A 104(41):16050–16055

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bouchie A (2013) First microRNA mimic enters clinic. Nat Biotechnol 31(7):577. doi:10.1038/nbt0713-577

    Article  PubMed  CAS  Google Scholar 

  • Bumcrot D, Manoharan M, Koteliansky V, Sah DW (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2(12):711–719

    Article  PubMed  CAS  Google Scholar 

  • Burnett JC, Rossi JJ, Tiemann K (2011) Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J 6(9):1130–1146. doi:10.1002/biot.201100054

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529. doi:10.1073/pnas.242606799

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzon R, Aqeilan RI, Alder H, Volinia S, Rassenti L, Liu X, Liu CG, Kipps TJ, Negrini M, Croce CM (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A 105(13):5166–5171. doi:10.1073/pnas.0800121105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen Y, Zhu X, Zhang X, Liu B, Huang L (2010) Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 18(9):1650–1656. doi:10.1038/mt.2010.136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chi KN, Hotte SJ, Ellard S, Gingerich JR, Joshua AM, Yu EY, Gleave ME (2012) A randomized phase II study of OGX-427 plus prednisone (P) versus P alone in patients (pts) with metastatic castration resistant prostate cancer (CRPC). J Clin Oncol 30(Suppl) [abstr 4514]

    Google Scholar 

  • Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714. doi:10.1038/nrg2634

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6(3):659–668. doi:10.1021/mp900015y

    Article  PubMed  CAS  Google Scholar 

  • Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070. doi:10.1038/nature08956

  • de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6 (6):443–453. doi:10.1038/nrd2310

  • Dohmen C, Edinger D, Frohlich T, Schreiner L, Lachelt U, Troiber C, Radler J, Hadwiger P, Vornlocher HP, Wagner E (2012) Nanosized multifunctional polyplexes for receptor-mediated SiRNA delivery. ACS Nano 6(6):5198–5208. doi:10.1021/nn300960m

    Article  PubMed  CAS  Google Scholar 

  • Duncan R, Vicent MJ (2013) Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv Drug Deliv Rev 65(1):60–70. doi:10.1016/j.addr.2012.08.012

    Article  PubMed  CAS  Google Scholar 

  • Dunn SS, Tian S, Blake S, Wang J, Galloway AL, Murphy A, Pohlhaus PD, Rolland JP, Napier ME, DeSimone JM (2012) Reductively responsive siRNA-conjugated hydrogel nanoparticles for gene silencing. J Am Chem Soc 134(17):7423–7430. doi:10.1021/ja300174v

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Edinger D, Kläger R, Troiber C, Dohmen C, Wagner E (2014) Gene silencing and antitumoral effects of Eg5 or Ran siRNA oligoaminoamide polyplexes. Drug Deliv Transl Res 4:84–95

    Google Scholar 

  • Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 102(10):3627–3632. doi:10.1073/pnas.0500613102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498

    Article  PubMed  CAS  Google Scholar 

  • Elmen J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B, Liang Z, Orum H, Koch T, Wahlestedt C (2005) Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 33(1):439–447. doi:10.1093/nar/gki193

  • Fröhlich T, Edinger D, Kläger R, Troiber C, Salcher E, Badgujar N, Martin I, Schaffert D, Cengizeroglu A, Hadwiger P, Vornlocher HP, Wagner E (2012) Structure-activity relationships of siRNA carriers based on sequence-defined oligo (ethane amino) amides. J Control Release. doi:10.1016/j.jconrel.2012.03.018. pii: S0168-3659(12)00206-4

  • Gallas A, Alexander C, Davies MC, Puri S, Allen S (2013) Chemistry and formulations for siRNA therapeutics. Chem Soc Rev. doi:10.1039/c3cs35520a

    PubMed  Google Scholar 

  • Gao K, Huang L (2009) Nonviral methods for siRNA delivery. Mol Pharm 6(3):651–658. doi:10.1021/mp800134q

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gao S, Dagnaes-Hansen F, Nielsen EJ, Wengel J, Besenbacher F, Howard KA, Kjems J (2009) The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol Ther 17(7):1225–1233. doi:10.1038/mt.2009.91

  • Greenberger LM, Horak ID, Filpula D, Sapra P, Westergaard M, Frydenlund HF, Albaek C, Schroder H, Orum H (2008) A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth. Mol Cancer Ther 7(11):3598–3608. doi:10.1158/1535-7163.MCT-08-0510

    Article  PubMed  CAS  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601. doi:10.1038/ncb1722

    Article  PubMed  CAS  Google Scholar 

  • Guilford P, Hopkins J, Harraway J, McLeod M, McLeod N, Harawira P, Taite H, Scoular R, Miller A, Reeve AE (1998) E-cadherin germline mutations in familial gastric cancer. Nature 392(6674):402–405. doi:10.1038/32918

    Article  PubMed  CAS  Google Scholar 

  • Gunther M, Lipka J, Malek A, Gutsch D, Kreyling W, Aigner A (2011) Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung. Eur J Pharm Biopharm 77(3):438–449. doi:10.1016/j.ejpb.2010.11.007

    Article  PubMed  Google Scholar 

  • Guzman-Villanueva D, El-Sherbiny IM, Herrera-Ruiz D, Vlassov AV, Smyth HD (2012) Formulation approaches to short interfering RNA and MicroRNA: challenges and implications. J Pharm Sci 101(11):4046–4066. doi:10.1002/jps.23300

    Article  PubMed  CAS  Google Scholar 

  • Han HD, Mora EM, Roh JW, Nishimura M, Lee SJ, Stone RL, Bar-Eli M, Lopez-Berestein G, Sood AK (2011) Chitosan hydrogel for localized gene silencing. Cancer Biol Ther 11(9):839–845

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hartmann L, Krause E, Antonietti M, Borner HG (2006) Solid-phase supported polymer synthesis of sequence-defined, multifunctional poly(amidoamines). Biomacromolecules 7(4):1239–1244

    Article  PubMed  CAS  Google Scholar 

  • Haussecker D (2012) The business of RNAi therapeutics in 2012. Mol Ther Nucleic Acids 1:e8. doi:10.1038/mtna.2011.9

    Article  PubMed  PubMed Central  Google Scholar 

  • Heidel JD, Yu Z, Liu JY, Rele SM, Liang Y, Zeidan RK, Kornbrust DJ, Davis ME (2007) Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci U S A 104(14):5715–5721

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S, Hartmann G (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11(3):263–270. doi:10.1038/nm1191

    Article  PubMed  CAS  Google Scholar 

  • Hotte SJ, Yu EY, Hirte HW, Higano CS, Gleave ME, Chi KN (2010) Phase I trial of OGX-427, a 2′methoxyethyl antisense oligonucleotide (ASO), against heat shock protein 27 (Hsp27): final results. J Clin Oncol 28:15s (suppl; abstr 3077)

    Google Scholar 

  • Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MO, Hovgaard MB, Schmitz A, Nyengaard JR, Besenbacher F, Kjems J (2006) RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 14(4):476–484. doi:10.1016/j.ymthe.2006.04.010. pii: S1525-0016(06)00180-8

  • Howe EN, Cochrane DR, Richer JK (2011) Targets of miR-200c mediate suppression of cell motility and anoikis resistance. Breast Cancer Res 13(2):R45. doi:10.1186/bcr2867

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ (2005) Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res 65(19):8984–8992

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim AF, Weirauch U, Thomas M, Grunweller A, Hartmann RK, Aigner A (2011) MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res 71(15):5214–5224. doi:10.1158/0008-5472.CAN-10-4645

    Article  PubMed  CAS  Google Scholar 

  • Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4(3):143–159. doi:10.1002/emmm.201100209

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070. doi:10.1158/0008-5472.CAN-05-1783

    Article  PubMed  CAS  Google Scholar 

  • Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12(7):1179–1187. doi:10.1261/rna.25706

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23(4):457–462. doi:10.1038/nbt1081

  • Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG (2012) Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther 20(3):513–524. doi:10.1038/mt.2011.294

  • Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115(2):209–216

    Article  PubMed  CAS  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385. doi:10.1038/nrm1644

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8(3):173–184. doi:10.1038/nrg2006

    Article  PubMed  CAS  Google Scholar 

  • Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M (2012) MicroRNAs in cancer management. Lancet Oncol 13(6):e249–e258. doi:10.1016/S1470-2045(12)70073-6

    Article  PubMed  CAS  Google Scholar 

  • Kopp F, Oak PS, Wagner E, Roidl A (2012) miR-200c sensitizes breast cancer cells to doxorubicin treatment by decreasing TrkB and Bmi1 expression. PLoS One 7(11):e50469. doi:10.1371/journal.pone.0050469

  • Kos P, Wagner E (2013) Polymers for siRNA delivery: combining precision with multifunctionality. Chem Today 31(2):6–10

    CAS  Google Scholar 

  • Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137(6):1005–1017. doi:10.1016/j.cell.2009.04.021. pii: S0092-8674(09)00446-2

  • Krebs MD, Jeon O, Alsberg E (2009) Localized and sustained delivery of silencing RNA from macroscopic biopolymer hydrogels. J Am Chem Soc 131(26):9204–9206. doi:10.1021/ja9037615

    Article  PubMed  CAS  Google Scholar 

  • Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610. doi:10.1038/nrg2843

    PubMed  CAS  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689. doi:10.1038/nature04303

  • Kwok A, Hart SL (2011) Comparative structural and functional studies of nanoparticle formulations for DNA and siRNA delivery. Nanomedicine 7(2):210–219. doi:10.1016/j.nano.2010.07.005. pii: S1549-9634(10)00239-X

  • Lee M, Kim SW (2005) Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm Res 22(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773. doi:10.1038/nature03315

    Article  PubMed  CAS  Google Scholar 

  • Lori F (2011) DermaVir: a plasmid DNA-based nanomedicine therapeutic vaccine for the treatment of HIV/AIDS. Expert Rev Vaccines 10(10):1371–1384. doi:10.1586/erv.11.118

    Article  PubMed  CAS  Google Scholar 

  • Lv H, Zhang S, Wang B, Cui S, Yan J (2006) Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 114(1):100–109. doi:10.1016/j.jconrel.2006.04.014

    Article  PubMed  CAS  Google Scholar 

  • Ma JB, Ye K, Patel DJ (2004) Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429(6989):318–322. doi:10.1038/nature02519

    Article  PubMed  CAS  Google Scholar 

  • Makinen PI, Koponen JK, Karkkainen AM, Malm TM, Pulkkinen KH, Koistinaho J, Turunen MP, Yla-Herttuala S (2006) Stable RNA interference: comparison of U6 and H1 promoters in endothelial cells and in mouse brain. J Gene Med 8(4):433–441. doi:10.1002/jgm.860

    Article  PubMed  CAS  Google Scholar 

  • Martin I, Dohmen C, Mas-Moruno C, Troiber C, Kos P, Schaffert D, Lachelt U, Teixido M, Gunther M, Kessler H, Giralt E, Wagner E (2012) Solid-phase-assisted synthesis of targeting peptide-PEG-oligo(ethane amino)amides for receptor-mediated gene delivery. Org Biomol Chem 10(16):3258–3268. doi:10.1039/c2ob06907e

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296(5566):298–300. doi:10.1126/science.1068883

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006):343–349

    Article  PubMed  CAS  Google Scholar 

  • Meyer M, Philipp A, Oskuee R, Schmidt C, Wagner E (2008) Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J Am Chem Soc 130(11):3272–3273

    Article  PubMed  CAS  Google Scholar 

  • Meyer M, Dohmen C, Philipp A, Kiener D, Maiwald G, Scheu C, Ogris M, Wagner E (2009) Synthesis and biological evaluation of a bioresponsive and endosomolytic siRNA-polymer conjugate. Mol Pharm 6(3):752–762. doi:10.1021/mp9000124

    Article  PubMed  CAS  Google Scholar 

  • Morgan-Lappe SE, Tucker LA, Huang X, Zhang Q, Sarthy AV, Zakula D, Vernetti L, Schurdak M, Wang J, Fesik SW (2007) Identification of Ras-related nuclear protein, targeting protein for Xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen. Cancer Res 67(9):4390–4398

    Article  PubMed  CAS  Google Scholar 

  • Morris KV, Rossi JJ (2006) Lentiviral-mediated delivery of siRNAs for antiviral therapy. Gene Ther 13(6):553–558. doi:10.1038/sj.gt.3302688

    Article  PubMed  CAS  Google Scholar 

  • Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, Fu C, Lindow M, Stenvang J, Straarup EM, Hansen HF, Koch T, Pappin D, Hannon GJ, Kauppinen S (2011) Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet 43(4):371–378. doi:10.1038/ng.786

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Oberhauser B, Wagner E (1992) Effective incorporation of 2′-O-methyl-oligoribonucleotides into liposomes and enhanced cell association through modification with thiocholesterol. Nucleic Acids Res 20(3):533–538

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK (2011) RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 11(1):59–67. doi:10.1038/nrc2966

  • Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8(1):23–36. doi:10.1038/nrm2085

    Article  PubMed  CAS  Google Scholar 

  • Rettig GR, Behlke MA (2012) Progress toward in vivo use of siRNAs-II. Mol Ther 20(3):483–512. doi:10.1038/mt.2011.263

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Salcher EE, Kos P, Frohlich T, Badgujar N, Scheible M, Wagner E (2012) Sequence-defined four-arm oligo(ethanamino)amides for pDNA and siRNA delivery: impact of building blocks on efficacy. J Control Release 164(3):380–386. doi:10.1016/j.jconrel.2012.06.023. pii: S0168-3659(12)00523-8

  • Santel A, Aleku M, Keil O, Endruschat J, Esche V, Fisch G, Dames S, Loffler K, Fechtner M, Arnold W, Giese K, Klippel A, Kaufmann J (2006) A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther 13(16):1222–1234. doi:10.1038/sj.gt.3302777

  • Schaffert D, Badgujar N, Wagner E (2011a) Novel Fmoc-polyamino acids for solid-phase synthesis of defined polyamidoamines. Org Lett 13(7):1586–1589. doi:10.1021/ol200381z

    Article  PubMed  CAS  Google Scholar 

  • Schaffert D, Troiber C, Salcher EE, Frohlich T, Martin I, Badgujar N, Dohmen C, Edinger D, Klager R, Maiwald G, Farkasova K, Seeber S, Jahn-Hofmann K, Hadwiger P, Wagner E (2011b) Solid-phase synthesis of sequence-defined T-, i-, and U-shape polymers for pDNA and siRNA delivery. Angew Chem Int Ed Engl 50(38):8986–8989. doi:10.1002/anie.201102165

    Article  PubMed  CAS  Google Scholar 

  • Scholz C, Wagner E (2012) Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release 161(2):554–565. doi:10.1016/j.jconrel.2011.11.014. pii: S0168-3659(11)01044-3

  • Schwake G, Youssef S, Kuhr JT, Gude S, David MP, Mendoza E, Frey E, Radler JO (2010) Predictive modeling of non-viral gene transfer. Biotechnol Bioeng 105(4):805–813. doi:10.1002/bit.22604

  • Seth RB, Sun L, Chen ZJ (2006) Antiviral innate immunity pathways. Cell Res 16(2):141–147. doi:10.1038/sj.cr.7310019

    Article  PubMed  CAS  Google Scholar 

  • Shim MS, Kwon YJ (2010) Efficient and targeted delivery of siRNA in vivo. FEBS J 277(23):4814–4827. doi:10.1111/j.1742-4658.2010.07904.x

  • Shiota M, Bishop JL, Nip KM, Zardan A, Takeuchi A, Cordonnier T, Beraldi E, Bazov J, Fazli L, Chi K, Gleave M, Zoubeidi A (2013) Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer. Cancer Res 73(10):3109–3119. doi:10.1158/0008-5472.CAN-12-3979

    Article  PubMed  CAS  Google Scholar 

  • Sonawane ND, Szoka FC Jr, Verkman AS (2003) Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 278(45): 44826–44831

    Article  PubMed  CAS  Google Scholar 

  • Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Rohl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432(7014):173–178

    Article  PubMed  CAS  Google Scholar 

  • Spagnou S, Miller AD, Keller M (2004) Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry 43(42):13348–13356. doi:10.1021/bi048950a

  • Tabernero J, Shapiro GI, LoRusso PM, Cervantes A, Schwartz GK, Weiss GJ, Paz-Ares L, Cho DC, Infante JR, Alsina M, Gounder MM, Falzone R, Harrop J, White AC, Toudjarska I, Bumcrot D, Meyers RE, Hinkle G, Svrzikapa N, Hutabarat RM, Clausen VA, Cehelsky J, Nochur SV, Gamba-Vitalo C, Vaishnaw AK, Sah DW, Gollob JA, Burris HA 3rd (2013) First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov 3(4):406–417. doi:10.1158/2159-8290.CD-12-0429

    Article  PubMed  CAS  Google Scholar 

  • Tili E, Croce CM, Michaille JJ (2009) miR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol 28(5):264–284. doi:10.1080/08830180903093796

    Article  PubMed  CAS  Google Scholar 

  • Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, Weidhaas JB, Bader AG, Slack FJ (2011) Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 19(6):1116–1122. doi:10.1038/mt.2011.48

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Treiber T, Treiber N, Meister G (2012) Regulation of microRNA biogenesis and function. Thromb Haemost 107(4):605–610. doi:10.1160/TH11-12-0836

    Article  PubMed  CAS  Google Scholar 

  • Troiber C, Kasper JC, Milani S, Scheible M, Martin I, Schaubhut F, Kuchler S, Radler J, Simmel FC, Friess W, Wagner E (2012) Comparison of four different particle sizing methods for siRNA polyplex characterization. Eur J Pharm Biopharm. doi:10.1016/j.ejpb.2012.08.014. pii: S0939-6411(12)00320-7

  • Troiber C, Edinger D, Kos P, Schreiner L, Klager R, Herrmann A, Wagner E (2013) Stabilizing effect of tyrosine trimers on pDNA and siRNA polyplexes. Biomaterials 34(5):1624–1633. doi:10.1016/j.biomaterials.2012.11.021. pii: S0142-9612(12)01265-3

  • Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A (2005) RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther 12(5):461–466

    Article  PubMed  CAS  Google Scholar 

  • Wagner E (2012) Polymers for siRNA delivery: inspired by viruses to be targeted, dynamic, and precise. Acc Chem Res 45(7):1005–1013. doi:10.1021/ar2002232

    Article  PubMed  CAS  Google Scholar 

  • Wagner E (2013) Biomaterials in RNAi therapeutics: quo vadis? Biomater Sci 1:804–809.doi:10.1039/C3BM60071H

  • Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8(2):129–138. doi:10.1038/nrd2742

  • Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, Rajeev KG, Nakayama T, Charrise K, Ndungo EM, Zimmermann T, Koteliansky V, Manoharan M, Stoffel M (2007) Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 25(10):1149–1157. doi:10.1038/nbt1339

    Article  PubMed  CAS  Google Scholar 

  • Yates LA, Norbury CJ, Gilbert RJ (2013) The long and short of microRNA. Cell 153(3):516–519. doi:10.1016/j.cell.2013.04.003

    Article  PubMed  CAS  Google Scholar 

  • Yazbeck DR, Min KL, Damha MJ (2002) Molecular requirements for degradation of a modified sense RNA strand by Escherichia coli ribonuclease H1. Nucleic Acids Res 30(14):3015–3025

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zamecnik J, Vargova L, Homola A, Kodet R, Sykova E (2004) Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumours. Neuropathol Appl Neurobiol 30(4):338–350. doi:10.1046/j.0305-1846.2003.00541.x

    Article  PubMed  CAS  Google Scholar 

  • Zheng D, Haddadin S, Wang Y, Gu LQ, Perry MC, Freter CE, Wang MX (2011) Plasma microRNAs as novel biomarkers for early detection of lung cancer. Int J Clin Exp Pathol 4(6): 575–586

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, Harborth J, Heyes JA, Jeffs LB, John M, Judge AD, Lam K, McClintock K, Nechev LV, Palmer LR, Racie T, Rohl I, Seiffert S, Shanmugam S, Sood V, Soutschek J, Toudjarska I, Wheat AJ, Yaworski E, Zedalis W, Koteliansky V, Manoharan M, Vornlocher HP, MacLachlan I (2006) RNAi-mediated gene silencing in non-human primates. Nature 441(7089):111–114

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding of related research of Katharina Müller and Ernst Wagner by DFG SFB 1032 project B4 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Müller, K., Wagner, E. (2014). RNAi-Based Nano-Oncologicals: Delivery and Clinical Applications. In: Alonso, M., Garcia-Fuentes, M. (eds) Nano-Oncologicals. Advances in Delivery Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-08084-0_9

Download citation

Publish with us

Policies and ethics