Skip to main content

Cancer Vaccines: Fundamentals and Strategies

  • Chapter
  • First Online:
Nano-Oncologicals

Part of the book series: Advances in Delivery Science and Technology ((ADST))

  • 1287 Accesses

Abstract

Despite current advances in the treatment of cancer patients, a number of cancers remain incurable. The activation of the immune system as an approach to treat cancer has been a goal in oncology. A better understanding of the biology of cells involved in the immune response together with the knowledge of how tolerance and tumor immunosuppression regulates antitumor immune response has contributed to the development of improved cancer vaccines. In the last years, new strategies to enhance the immune response against cancer have been studied including antigen-pulsed dendritic cells, recombinant DNA and viral vaccines, genetically modified tumor cells, and a number of novel immune adjuvants targeting dendritic cells, T cells, and NK cells. In addition, targeting immunoregulatory cells and T cell inhibitory molecules with monoclonal antibodies is becoming a critical approach to enhance cancer vaccines in the clinical scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai WZ, Tibshirani R, Taidi B, Czerwinski D, Levy R (2009) Anti-idiotype antibody response after vaccination correlates with better overall survival in follicular lymphoma. Blood 113(23): 5743–5746

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Albeituni SH, Ding C, Yan J (2013) Hampering immune suppressors: therapeutic targeting of myeloid-derived suppressor cells in cancer. Cancer J 19(6):490–501

    Article  PubMed  CAS  Google Scholar 

  • Ali OA, Huebsch N, Cao L, Dranoff G, Mooney DJ (2009) Infection-mimicking materials to program dendritic cells in situ. Nat Mater 8(2):151–158

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ali OA, Verbeke C, Johnson C, Sands W, Lewin SA, White D, Doherty E, Dranoff G, Mooney DJ (2014) Identification of immune factors regulating anti-tumor immunity using polymeric vaccines with multiple adjuvants. Cancer Res 74(6):1670–1681

    Google Scholar 

  • Alvarez E, Moga E, Barquinero J, Sierra J, Briones J (2010) Dendritic and tumor cell fusions transduced with adenovirus encoding CD40L eradicate B-cell lymphoma and induce a Th17-type response. Gene Ther 17(4):469–477

    Article  PubMed  CAS  Google Scholar 

  • Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25: 297–336

    Article  PubMed  CAS  Google Scholar 

  • Blatner NR, Mulcahy MF, Dennis KL, Scholtens D, Bentrem DJ, Phillips JD, Ham S, Sandall BP, Khan MW, Mahvi DM, Halverson AL, Stryker SJ, Boller AM, Singal A, Sneed RK, Sarraj B, Ansari MJ, Oft M, Iwakura Y, Zhou L, Bonertz A, Beckhove P, Gounari F, Khazaie K (2012) Expression of RORγt marks a pathogenic regulatory T cell subset in human colon cancer. Sci Transl Med 4(164):164ra159

    Google Scholar 

  • Bluestone JA, Small EJ (2012) The future of cancer treatment: will it include immunotherapy? Cancer Cell 22(1):7–8

    Article  PubMed  CAS  Google Scholar 

  • Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM (2011) CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 10(4):499–511

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brightbill HD, Modlin RL (2000) Toll-like receptors: molecular mechanisms of the mammalian immune response. Immunology 101(1):1–10

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Briones J, Timmerman J, Levy R (2002) In vivo antitumor effect of CD40L-transduced tumor cells as a vaccine for B-cell lymphoma. Cancer Res 62(11):3195–3199

    PubMed  CAS  Google Scholar 

  • Briones J, Timmerman JM, Panicalli DL, Levy R (2003) Antitumor immunity after vaccination with B lymphoma cells overexpressing a triad of costimulatory molecules. J Natl Cancer Inst 95(7):548–555

    Article  PubMed  CAS  Google Scholar 

  • Cerundolo V, Silk JD, Masri SH, Salio M (2009) Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol 9:28–38

    Article  PubMed  CAS  Google Scholar 

  • Chambers CA, Kuhns MS, Egen JG, Allison JP (2001) CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 19:565–594

    Article  PubMed  CAS  Google Scholar 

  • Chang DH, Osman K, Connolly J, Kukreja A, Krasovsky J, Pack M, Hutchinson A, Geller M, Liu N, Annable R, Shay J, Kirchhoff K, Nishi N, Ando Y, Hayashi K, Hassoun H, Steinman RM, Dhodapkar MV (2005) Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201:1503–1517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen W, McCluskey J (2006) Immunodominance and immunodomination: critical factors in developing effective CD8+ T-cell-based cancer vaccines. Adv Cancer Res 95:203–247

    Article  PubMed  CAS  Google Scholar 

  • Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10

    Article  PubMed  Google Scholar 

  • Chen PW, Wang M, Bronte V, Zhai Y, Rosenberg SA, Restifo NP (1996) Therapeutic antitumor response after immunization with a recombinant adenovirus encoding a model tumor-associated antigen. J Immunol 156(1):224–231

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen AI, McAdam AJ, Buhlmann JE, Scott S, Lupher ML Jr, Greenfield EA, Baum PR, Fanslow WC, Calderhead DM, Freeman GJ, Sharpe AH (1999) Ox40-ligand has a critical costimulatory role in dendritic cell: T cell interactions. Immunity 11(6):689–698

    Article  PubMed  CAS  Google Scholar 

  • Chung Y, Qin H, Kang CY, Kim S, Kwak LW, Dong C (2007) An NKT-mediated autologous vaccine generates CD4 T-cell dependent potent antilymphoma immunity. Blood 110:2013–2019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Copier J, Dalgleish A (2010) Whole-cell vaccines: a failure or a success waiting to happen? Curr Opin Mol Ther 12(1):14–20

    PubMed  CAS  Google Scholar 

  • Curti BD, Kovacsovics-Bankowski M, Morris N, Walker E, Chisholm L, Floyd K, Walker J, Gonzalez I, Meeuwsen T, Fox BA, Moudgil T, Miller W, Haley D, Coffey T, Fisher B, Delanty-Miller L, Rymarchyk N, Kelly T, Crocenzi T, Bernstein E, Sanborn R, Urba WJ, Weinberg AD (2013) OX40 is a potent immune stimulating target in late stage cancer patients. Cancer Res 73(24):7189–7198 [Epub 2013 Oct 31]

    Google Scholar 

  • Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G (2013) Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res 73(12):3591–3603

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gatza E, Okada CY (2002) Tumor cell lysate-pulsed dendritic cells are more effective than TCR Id protein vaccines for active immunotherapy of T cell lymphoma. J Immunol 169(9):5227–5235

    Article  PubMed  Google Scholar 

  • Gong J, Avigan D, Chen D, Wu Z, Koido S, Kashiwaba M, Kufe D (2000) Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc Natl Acad Sci U S A 97(6):2715–2718

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grosenbach DW, Schlom J, Gritz L, Gómez Yafal A, Hodge JW (2003) A recombinant vector expressing transgenes for four T-cell costimulatory molecules (OX40L, B7-1, ICAM-1, LFA-3) induces sustained CD4+ and CD8+ T-cell activation, protection from apoptosis, and enhanced cytokine production. Cell Immunol 222(1):45–57

    Article  PubMed  CAS  Google Scholar 

  • Harrop R, Carroll MW (2006) Viral vectors for cancer immunotherapy. Front Biosci 11:804–817

    Article  PubMed  CAS  Google Scholar 

  • Heath WR, Carbone FR (2009) Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat Immunol 10(12):1237–1244

    Article  PubMed  CAS  Google Scholar 

  • Heemskerk B, Kvistborg P, Schumacher TN (2013) The cancer antigenome. EMBO J 32(2):194–203

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, Engleman EG, Levy R (1996) Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 2(1):52–58

    Article  PubMed  CAS  Google Scholar 

  • Hsu FJ, Caspar CB, Czerwinski D, Kwak LW, Liles TM, Syrengelas A, Taidi-Laskowski B, Levy R (1997) Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma: long-term results of a clinical trial. Blood 89(9):3129–3135

    PubMed  CAS  Google Scholar 

  • Humrich J, Jenne L (2003) Viral vectors for dendritic cell-based immunotherapy. Curr Top Microbiol Immunol 276:241–259

    PubMed  CAS  Google Scholar 

  • Jensen SM, Maston LD, Gough MJ, Ruby CE, Redmond WL, Crittenden M, Li Y, Puri S, Poehlein CH, Morris N, Kovacsovics-Bankowski M, Moudgil T, Twitty C, Walker EB, Hu HM, Urba WJ, Weinberg AD, Curti B, Fox BA (2010) Signaling through OX40 enhances antitumor immunity. Semin Oncol 37(5):524–532

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kamphorst AO, Ahmed R (2013) Manipulating the PD-1 pathway to improve immunity. Curr Opin Immunol 25(3):381–388

    Article  PubMed  CAS  Google Scholar 

  • Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, Manson K, Panicali DL, Laus R, Schlom J, Dahut WL, Arlen PM, Gulley JL, Godfrey WR (2010a) Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28(7):1099–1105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF; IMPACT Study Investigators (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422

    Google Scholar 

  • Kaumaya PT (2013) Bridging oncology and immunology: expanding horizons with innovative peptide vaccines and peptidomimetics. Immunotherapy 5(11):1159–1163

    Article  PubMed  CAS  Google Scholar 

  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  PubMed  CAS  Google Scholar 

  • King CA, Spellerberg MB, Zhu D, Rice J, Sahota SS, Thompsett AR, Hamblin TJ, Radl J, Stevenson FK (1998) DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat Med 4(11):1281–1286

    Article  PubMed  CAS  Google Scholar 

  • Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, Kronenberg M (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525

    Article  PubMed  CAS  Google Scholar 

  • Klein J, Sato A (2000) The HLA system. First of two parts. N Engl J Med 343(10):702–709

    Google Scholar 

  • Klein J, Sato A (2000) The HLA system. Second of two parts. N Engl J Med 343(11):782–763

    Google Scholar 

  • Kretz-Rommel A, Qin F, Dakappagari N, Torensma R, Faas S, Wu D, Bowdish KS (2007) In vivo targeting of antigens to human dendritic cells through DC-SIGN elicits stimulatory immune responses and inhibits tumor growth in grafted mouse models. J Immunother 30(7):715–726

    Article  PubMed  CAS  Google Scholar 

  • Levitsky HI, Montgomery J, Ahmadzadeh M, Staveley-O’Carroll K, Guarnieri F, Longo DL, Kwak LW (1996) Immunization with granulocyte-macrophage colony-stimulating factor-transduced, but not B7-1-transduced, lymphoma cells primes idiotype-specific T cells and generates potent systemic antitumor immunity. J Immunol 156(10):3858–3865

    PubMed  CAS  Google Scholar 

  • Li B, VanRoey M, Wang C, Chen TH, Korman A, Jooss K (2009) Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor—secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors. Clin Cancer Res 15(5):1623–1634

    Article  PubMed  CAS  Google Scholar 

  • Liebowitz DN, Lee KP, June CH (1998) Costimulatory approaches to adoptive immunotherapy. Curr Opin Oncol 10(6):533–541

    Article  PubMed  CAS  Google Scholar 

  • Litzinger MT, Fernando R, Curiel TJ, Grosenbach DW, Schlom J, Palena C (2007) IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 110(9):3192–3201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu K, Idoyaga J, Charalambous A, Fujii S, Bonito A, Mordoh J, Wainstok R, Bai XF, Liu Y, Steinman RM (2005) Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells. J Exp Med 202:1507–1516

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38(5):1404–1413

    Article  PubMed  CAS  Google Scholar 

  • Marabelle A, Kohrt H, Sagiv-Barfi I, Ajami B, Axtell RC, Zhou G, Rajapaksa R, Green MR, Torchia J, Brody J, Luong R, Rosenblum MD, Steinman L, Levitsky HI, Tse V, Levy R (2013) Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J Clin Invest 123(6):2447–2463

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mastrangelo MJ, Eisenlohr LC, Gomella L, Lattime EC (2000) Poxvirus vectors: orphaned and underappreciated. J Clin Invest 105(8):1031–1034

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morse MA, Hobeika AC, Osada T, Serra D, Niedzwiecki D, Lyerly HK, Clay TM (2008) Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 112(3):610–618

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Neller MA, López JA, Schmidt CW (2008) Antigens for cancer immunotherapy. Semin Immunol 20(5):286–295

    Article  PubMed  CAS  Google Scholar 

  • Ng P, Graham FL (2002) Construction of first-generation adenoviral vectors. Methods Mol Med 69:389–414

    PubMed  CAS  Google Scholar 

  • Ochoa MC, Mazzolini G, Hervas-Stubbs S, de Sanmamed MF, Berraondo P, Melero I (2013) Interleukin-15 in gene therapy of cancer. Curr Gene Ther 13(1):15–30

    Article  PubMed  CAS  Google Scholar 

  • Osada T, Chong G, Tansik R, Hong T, Spector N, Kumar R, Hurwitz HI, Dev I, Nixon AB, Lyerly HK, Clay T, Morse MA (2008) The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother 57(8):1115–1124

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12(4):265–277

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Paulis LE, Mandal S, Kreutz M, Figdor CG (2013) Dendritic cell-based nanovaccines for cancer immunotherapy. Curr Opin Immunol 25(3):389–395

    Article  PubMed  CAS  Google Scholar 

  • Piconese S, Valzasina B, Colombo MP (2008) OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 205(4):825–839

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Preston CC, Maurer MJ, Oberg AL, Visscher DW, Kalli KR, Hartmann LC, Goode EL, Knutson KL (2013) The Ratios of CD8(+) T Cells to CD4(+)CD25(+) FOXP3(+) and FOXP3(−) T Cells Correlate with Poor Clinical Outcome in Human Serous Ovarian Cancer. PLoS One 8(11):e80063

    Article  PubMed  PubMed Central  Google Scholar 

  • Raje N, Hideshima T, Davies FE, Chauhan D, Treon SP, Young G, Tai YT, Avigan D, Gong J, Schlossman RL, Richardson P, Kufe DW, Anderson KC (2004) Tumour cell/dendritic cell fusions as a vaccination strategy for multiple myeloma. Br J Haematol 125(3):343–352

    Article  PubMed  Google Scholar 

  • Ribas A, Butterfield LH, Glaspy JA, Economou JS (2003) Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol 21(12):2415–2432

    Article  PubMed  CAS  Google Scholar 

  • Rice J, Buchan S, Stevenson FK (2002) Critical components of a DNA fusion vaccine able to induce protective cytotoxic T cells against a single epitope of a tumor antigen. J Immunol 169(7):3908–3913

    Article  PubMed  CAS  Google Scholar 

  • Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8(2):108–120

    Article  PubMed  CAS  Google Scholar 

  • Richter J, Neparidze N, Zhang L, Nair S, Monesmith T, Sundaram R, Miesowicz F, Dhodapkar KM, Dhodapkar MV (2013) Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood 121(3):423–430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E, Samuels Y, Rosenberg SA (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19(6):747–752

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Roncarolo MG, Battaglia M (2007) Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nat Rev Immunol 7(8):585–598

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA, Zhai Y, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Seipp CA, Einhorn JH, Roberts B, White DE (1998) Immunizing patients with metastatic melanoma using recombinant adenoviruses encoding MART-1 or gp100 melanoma antigens. J Natl Cancer Inst 90(24):1894–1900

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rosenblatt J, Avivi I, Vasir B, Uhl L, Munshi NC, Katz T, Dey BR, Somaiya P, Mills H, Campigotto F, Weller E, Joyce R, Levine JD, Tzachanis D, Richardson P, Laubach J, Raje N, Boussiotis V, Yuan YE, Bisharat L, Held V, Rowe J, Anderson K, Kufe D, Avigan D (2013) Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res 19(13):3640–3648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rousseau RF, Biagi E, Dutour A, Yvon ES, Brown MP, Lin T, Mei Z, Grilley B, Popek E, Heslop HE, Gee AP, Krance RA, Popat U, Carrum G, Margolin JF, Brenner MK (2006) Immunotherapy of high-risk acute leukemia with a recipient (autologous) vaccine expressing transgenic human CD40L and IL-2 after chemotherapy and allogeneic stem cell transplantation. Blood 107(4): 1332–1341

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schlom J (2012) Therapeutic cancer vaccines: current status and moving forward. J Natl Cancer Inst 104(8):599–613

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schuler G (2010) Dendritic cells in cancer immunotherapy. Eur J Immunol 40(8):2123–2130

    Article  PubMed  CAS  Google Scholar 

  • Schultze JL, Cardoso AA, Freeman GJ, Seamon MJ, Daley J, Pinkus GS, Gribben JG, Nadler LM (1995) Follicular lymphomas can be induced to present alloantigen efficiently: a conceptual model to improve their tumor immunogenicity. Proc Natl Acad Sci U S A 92(18):8200–8204

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schultze JL, Michalak S, Seamon MJ, Dranoff G, Jung K, Daley J, Delgado JC, Gribben JG, Nadler LM (1997) CD40-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J Clin Invest 100(11):2757–2765

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shiver JW, Emini EA (2004) Recent advances in the development of HIV-1 vaccines using replication-incompetent adenovirus vectors. Annu Rev Med 55:355–372

    Article  PubMed  CAS  Google Scholar 

  • Smith DM, Simon JK, Baker JR Jr (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 8:592–605

    Article  Google Scholar 

  • Soiffer R, Hodi FS, Haluska F, Jung K, Gillessen S, Singer S, Tanabe K, Duda R, Mentzer S, Jaklitsch M, Bueno R, Clift S, Hardy S, Neuberg D, Mulligan R, Webb I, Mihm M, Dranoff G (2003) Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 21(17): 3343–3350

    Article  PubMed  CAS  Google Scholar 

  • Sotomayor EM, Borrello I, Tubb E, Rattis FM, Bien H, Lu Z, Fein S, Schoenberger S, Levitsky HI (1999) Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat Med 5(7):780–787

    Article  PubMed  CAS  Google Scholar 

  • Stephan MT, Moon JJ, Um SH, Bershteyn A, Irvine DJ (2010) Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat Med 16(9):1035–1041

    Google Scholar 

  • Stevenson FK, Ottensmeier CH, Rice J (2010) DNA vaccines against cancer come of age. Curr Opin Immunol 22(2):264–270

    Article  PubMed  CAS  Google Scholar 

  • Syrengelas AD, Levy R (1999) DNA vaccination against the idiotype of a murine B cell lymphoma: mechanism of tumor protection. J Immunol 162(8):4790–4797

    PubMed  CAS  Google Scholar 

  • Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13(10):739–752

    Article  PubMed  CAS  Google Scholar 

  • Timmerman JM, Caspar CB, Lambert SL, Syrengelas AD, Levy R (2001) Idiotype-encoding recombinant adenoviruses provide protective immunity against murine B-cell lymphomas. Blood 97(5):1370–1377

    Article  PubMed  CAS  Google Scholar 

  • Timmerman JM, Singh G, Hermanson G, Hobart P, Czerwinski DK, Taidi B, Rajapaksa R, Caspar CB, Van Beckhoven A, Levy R (2002a) Immunogenicity of a plasmid DNA vaccine encoding chimeric idiotype in patients with B-cell lymphoma. Cancer Res 62(20):5845–5852

    PubMed  CAS  Google Scholar 

  • Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM, Taidi B, Rajapaksa R, Caspar CB, Okada CY, van Beckhoven A, Liles TM, Engleman EG, Levy R (2002b) Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 99(5):1517–1526

    Article  PubMed  CAS  Google Scholar 

  • Traversari C, van der Bruggen P, Luescher IF, Lurquin C, Chomez P, Van Pel A, De Plaen E, Amar-Costesec A, Boon T (1992) A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 176(5):1453–1457

    Article  PubMed  CAS  Google Scholar 

  • Trombetta ES, Mellman I (2005) Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol 23:975–1028

    Article  PubMed  CAS  Google Scholar 

  • Ueno H, Klechevsky E, Schmitt N, Ni L, Flamar AL, Zurawski S, Zurawski G, Palucka K, Banchereau J, Oh S (2011) Targeting human dendritic cell subsets for improved vaccines. Semin Immunol 23(1):21–27

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • van Kooten C, Banchereau J (2000) CD40-CD40 ligand. J Leukoc Biol 67(1):2–17

    PubMed  Google Scholar 

  • Vittes GE, Harden EL, Ottensmeier CH, Rice J, Stevenson FK (2011) DNA fusion gene vaccines induce cytotoxic T-cell attack on naturally processed peptides of human prostate-specific membrane antigen. Eur J Immunol 41(8):2447–2456

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Lin GH, McPherson AJ, Watts TH (2009) Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev 229(1):192–215

    Article  PubMed  CAS  Google Scholar 

  • Weinberg AD, Morris NP, Kovacsovics-Bankowski M, Urba WJ, Curti BD (2011) Science gone translational: the OX40 agonist story. Immunol Rev 244(1):218–231

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wierda WG, Castro JE, Aguillon R, Sampath D, Jalayer A, McMannis J, Prussak CE, Keating M, Kipps TJ (2010) A phase I study of immune gene therapy for patients with CLL using a membrane-stable, humanized CD154. Leukemia 24(11):1893–1900

    Article  PubMed  CAS  Google Scholar 

  • Wilcox RA, Tamada K, Flies DB, Zhu G, Chapoval AI, Blazar BR, Kast WM, Chen L (2004) Ligation of CD137 receptor prevents and reverses established anergy of CD8+ cytolytic T lymphocytes in vivo. Blood 103(1):177–184

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Hodge JW, Grosenbach DW, Schlom J (2005) Vaccines with enhanced costimulation maintain high avidity memory CTL. J Immunol 175(6):3715–3723

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Briones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Briones, J. (2014). Cancer Vaccines: Fundamentals and Strategies. In: Alonso, M., Garcia-Fuentes, M. (eds) Nano-Oncologicals. Advances in Delivery Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-08084-0_6

Download citation

Publish with us

Policies and ethics