Skip to main content

Polymeric Nanocarriers for Cancer Therapy

  • Chapter
  • First Online:
Nano-Oncologicals

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

In the past decades, polymeric nanocarriers have emerged as a biocompatible platform for delivering therapeutic compounds to tumor sites in a cancer-selective manner, and some polymeric nanocarriers have already been approved for clinical application while more are under clinical trial, demonstrating their promises for cancer therapy. In this chapter, the concept of polymeric nanocarriers, structure design, and preparation methods are introduced and summarized firstly. Besides, the applications of polymeric nanocarriers delivering cargoes to the tumor tissues in a passive way by enhanced permeability and retention (EPR) effects and parameters that may influence this procedure have been summarized and discussed. Moreover, the polymeric nanoparticles could actively target tumor tissues through the interaction of targeting moieties on their surfaces with cancer cell-specific receptors, and several types of targeting ligands could be used for active targeting. Furthermore, polymeric nanocarriers have been functionalized to release encapsulated drugs at specific sites or time intervals controlled by environmental triggers, such as pH, temperature, and enzyme. Finally, the application of polymeric nanocarriers for primary cancer and metastatic cancer diagnosis and treatment are described. Polymeric nanocarriers have demonstrated some success in the field of cancer diagnosis and therapy, and with the progress in chemistry, biology, oncology, and modern technologies, much powerful polymeric nanocarriers would be developed for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agemy L, Friedmann-Morvinski D, Kotamraju VR et al (2011) Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc Natl Acad Sci U S A 108(42):17450–17455

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ai H, Jones SA, Lvov YM (2003) Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles. Cell Biochem Biophys 39(1):23–43

    Article  PubMed  CAS  Google Scholar 

  • Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2(10):750–763

    Article  PubMed  CAS  Google Scholar 

  • Andrieux K, Couvreur P (2009) Polyalkylcyanoacrylate nanoparticles for delivery of drugs across the blood-brain barrier. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(5):463–474

    Article  PubMed  CAS  Google Scholar 

  • Avgoustakis K (2004) Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr Drug Deliv 1(4):321–333

    Article  PubMed  CAS  Google Scholar 

  • Bae Y, Jang WD, Nishiyama N et al (2005) Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst 1(3):242–250

    Article  PubMed  CAS  Google Scholar 

  • Bae Y, Nishiyama N, Kataoka K (2007) In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug Chem 18(4):1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Bajaj A, Miranda OR, Kim IB et al (2009) Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays. Proc Natl Acad Sci U S A 106(27):10912–10916

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brewer E, Coleman J, Lowman A (2011) Emerging technologies of polymeric nanoparticles in cancer drug delivery. J Nanomater 2011:1–10

    Article  CAS  Google Scholar 

  • Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626

    Article  PubMed  CAS  Google Scholar 

  • Cabral H, Nishiyama N, Kataoka K (2011a) Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc Chem Res 44(10):999–1008

    Article  PubMed  CAS  Google Scholar 

  • Cabral H, Matsumoto Y, Mizuno K et al (2011b) Accumulation of sub-100nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–823

    Article  PubMed  CAS  Google Scholar 

  • Cabral H, Murakami M, Hojo H et al (2013) Targeted therapy of spontaneous murine pancreatic tumors by polymeric micelles prolongs survival and prevents peritoneal metastasis. Proc Natl Acad Sci U S A 110(28):11397–11402

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Capretto L, Carugo D, Mazzitelli S et al (2013) Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv Drug Deliv Rev 65(11–12):1496–1532

    Article  PubMed  CAS  Google Scholar 

  • Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564

    Article  PubMed  CAS  Google Scholar 

  • Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572

    Article  PubMed  CAS  Google Scholar 

  • Chauhan VP, Jain RK (2013) Strategies for advancing cancer nanomedicine. Nat Mater 12(11):958–962

    Article  PubMed  CAS  Google Scholar 

  • Cheng R, Meng FH, Deng C et al (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34(14):3647–3657

    Article  PubMed  CAS  Google Scholar 

  • Chiang AC, Massague J (2008) Molecular basis of metastasis. N Engl J Med 359(26):2814–2823

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chiannilkulchai N, Ammoury N, Caillou B et al (1990) Hepatic tissue distribution of doxorubicin-loaded nanoparticles after i.v. administration in reticulosarcoma M 5076 metastasis-bearing mice. Cancer Chemother Pharmacol 26(2):122–126

    Article  PubMed  CAS  Google Scholar 

  • Cho K, Wang X, Nie S et al (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316

    Article  PubMed  CAS  Google Scholar 

  • Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422(6927):37–44

    Article  PubMed  CAS  Google Scholar 

  • Danhier F, Ansorena E, Silva JM et al (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161(2):505–522

    Article  PubMed  CAS  Google Scholar 

  • Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782

    Article  PubMed  CAS  Google Scholar 

  • Davis ME, Zuckerman JE, Choi CH et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deming TJ, Hanson JA, Chang CB et al (2008) Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature 455(7209):85–88

    Article  PubMed  CAS  Google Scholar 

  • Deng C, Jiang Y, Cheng R et al (2012) Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today 7:467–480

    Article  CAS  Google Scholar 

  • Deshayes S, Cabral H, Ishii T et al (2013) Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J Am Chem Soc 135(41):15501–15507

    Article  PubMed  CAS  Google Scholar 

  • Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6(9):688–701

    Article  PubMed  CAS  Google Scholar 

  • Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  PubMed  CAS  Google Scholar 

  • Ferrari M (2008) Nanogeometry: beyond drug delivery. Nat Nanotechnol 3(3):131–132

    Article  PubMed  CAS  Google Scholar 

  • Fessi H, Puisieux F, Devissaguet JP et al (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55(1):R1–R4

    Article  CAS  Google Scholar 

  • Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  PubMed  CAS  Google Scholar 

  • Geng Y, Dalhaimer P, Cai S et al (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2(4):249–255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ghosh D, Lee Y, Thomas S et al (2012) M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat Nanotechnol 7(10):677–682

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gratton SE, Ropp PA, Pohlhaus PD et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 105(33):11613–11618

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grzelczak M, Vermant J, Furst EM et al (2010) Directed self-assembly of nanoparticles. ACS Nano 4(7):3591–3605

    Article  PubMed  CAS  Google Scholar 

  • Gu F, Zhang L, Teply BA et al (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci U S A 105(7):2586–2591

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hamaguchi T, Matsumura Y, Suzuki M et al (2005) NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 92(7):1240–1246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hammond PT (2012) Building biomedical materials layer-by-layer. Mater Today 15(5):196–206

    Article  CAS  Google Scholar 

  • Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499

    Article  PubMed  Google Scholar 

  • Ideta R, Tasaka F, Jang WD et al (2005) Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer. Nano Lett 5(12):2426–2431

    Article  PubMed  CAS  Google Scholar 

  • Jang WD, Nakagishi Y, Nishiyama N et al (2006) Polyion complex micelles for photodynamic therapy: incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property. J Control Release 113(1):73–79

    Article  PubMed  CAS  Google Scholar 

  • Jeong B, Choi YK, Bae YH et al (1999) New biodegradable polymers for injectable drug delivery systems. J Control Release 62(1–2):109–114

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Kim BYS, Rutka JT et al (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150

    Article  PubMed  CAS  Google Scholar 

  • Jokerst JV, Lobovkina T, Zare RN et al (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6(4):715–728

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kaida S, Cabral H, Kumagai M et al (2010) Visible drug delivery by supramolecular nanocarriers directing to single-platformed diagnosis and therapy of pancreatic tumor model. Cancer Res 70(18):7031–7041

    Article  PubMed  CAS  Google Scholar 

  • Kamaly N, Xiao Z, Valencia PM et al (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Karnik R, Gu F, Basto P et al (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8(9):2906–2912

    Article  PubMed  CAS  Google Scholar 

  • Kataoka K, Harashima H (2001) Gene delivery systems: viral vs. non-viral vectors. Adv Drug Deliv Rev 52(3):151

    Article  CAS  Google Scholar 

  • Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47(1):113–131

    Article  PubMed  CAS  Google Scholar 

  • Kaul G, Amiji M (2002) Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm Res 19(7):1061–1067

    Article  PubMed  CAS  Google Scholar 

  • Kaur IP, Bhandari R, Bhandari S et al (2008) Potential of solid lipid nanoparticles in brain targeting. J Control Release 127(2):97–109

    Article  PubMed  CAS  Google Scholar 

  • Kim TY, Kim DW, Chung JY et al (2004) Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10(11):3708–3716

    Article  PubMed  CAS  Google Scholar 

  • Kolishetti N, Dhar S, Valencia PM et al (2010) Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci U S A 107(42):17939–17944

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koo YEL, Reddy GR, Bhojani M et al (2006) Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev 58(14):1556–1577

    Article  PubMed  CAS  Google Scholar 

  • Kwon GS, Kataoka K (1995) Block-copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 16(2–3):295–309

    Article  CAS  Google Scholar 

  • Langer R (1998) Drug delivery and targeting. Nature 392:5–10

    PubMed  CAS  Google Scholar 

  • Lee Y, Kataoka K (2009) Biosignal-sensitive polyion complex micelles for the delivery of biopharmaceuticals. Soft Matter 5(20):3810–3817

    Article  CAS  Google Scholar 

  • Lee Y, Fukushima S, Bae Y et al (2007) A protein nanocarrier from charge-conversion polymer in response to endosomal pH. J Am Chem Soc 129(17):5362–5363

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Miyata K, Oba M et al (2008) Charge-conversion ternary polyplex with endosome disruption moiety: a technique for efficient and safe gene delivery. Angew Chem Int Ed 47(28):5163–5166

    Article  CAS  Google Scholar 

  • Lee Y, Ishii T, Cabral H et al (2009) Charge-conversional polyionic complex micelles-efficient nanocarriers for protein delivery into cytoplasm. Angew Chem Int Ed 48(29):5309–5312

    Article  CAS  Google Scholar 

  • Lee Y, Ishii T, Kim HJ et al (2010) Efficient delivery of bioactive antibodies into the cytoplasm of living cells by charge-conversional polyion complex micelles. Angew Chem Int Ed 49(14):2552–2555

    Article  CAS  Google Scholar 

  • Lesniak MS, Brem H (2004) Targeted therapy for brain tumours. Nat Rev Drug Discov 3(6):499–508

    Article  PubMed  CAS  Google Scholar 

  • Li SD, Huang L (2009) Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim Biophys Acta 1788(10):2259–2266

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Matsumoto A, Cabral H, Sato N et al (2010) Assessment of tumor metastasis by the direct determination of cell-membrane sialic acid expression. Angew Chem Int Ed 49(32):5494–5497

    Article  CAS  Google Scholar 

  • Matsumura Y, Kataoka K (2009) Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 100(4):572–579

    Article  PubMed  CAS  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12):6387–6392

    PubMed  CAS  Google Scholar 

  • Maxfield FR, McGraw TE (2004) Endocytic recycling. Nat Rev Mol Cell Biol 5(2):121–132

    Article  PubMed  CAS  Google Scholar 

  • Mi P, Cabral H, Kokuryo D et al (2013) Gd-DTPA-loaded polymer-metal complex micelles with high relaxivity for MR cancer imaging. Biomaterials 34(2):492–500

    Article  PubMed  CAS  Google Scholar 

  • Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6(1):9–24

    Article  PubMed  CAS  Google Scholar 

  • Miura Y, Takenaka T, Toh K et al (2013) Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood-brain tumor barrier. ACS Nano 7(10):8583–8592

    Article  PubMed  CAS  Google Scholar 

  • Miyata K, Kakizawa Y, Nishiyama N et al (2004) Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. J Am Chem Soc 126(8):2355–2361

    Article  PubMed  CAS  Google Scholar 

  • Miyata K, Nishiyama N, Kataoka K (2012) Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem Soc Rev 41(7):2562–2574

    Article  PubMed  CAS  Google Scholar 

  • Moore A, Sergeyev N, Bredow S et al (1998) A model system to quantitate tumor burden in locoregional lymph nodes during cancer spread. Invasion Metastasis 18(4):192–197

    Article  PubMed  Google Scholar 

  • Morton SW, Herlihy KP, Shopsowitz KE et al (2013) Scalable manufacture of built-to-order nanomedicine: spray-assisted layer-by-layer functionalization of PRINT nanoparticles. Adv Mater 25(34):4707–4713

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Murakami M, Cabral H, Matsumoto Y et al (2011) Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci Transl Med 3(64):64ra62.

    Google Scholar 

  • Naito M, Ishii T, Matsumoto A et al (2012) A phenylboronate-functionalized polyion complex micelle for ATP-triggered release of siRNA. Angew Chem Int Ed 51(43):10751–10755

    Article  CAS  Google Scholar 

  • Nakanishi T, Fukushima S, Okamoto K et al (2001) Development of the polymer micelle carrier system for doxorubicin. J Control Release 74(1–3):295–302

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112(3):630–648

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama N, Okazaki S, Cabral H et al (2003a) Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res 63(24):8977–8983

    PubMed  CAS  Google Scholar 

  • Nishiyama N, Stapert HR, Zhang GD et al (2003b) Light-harvesting ionic dendrimer porphyrins as new photosensitizers for photodynamic therapy. Bioconjug Chem 14(1):58–66

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama N, Iriyama A, Jang WD et al (2005) Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat Mater 4(12):934–941

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama N, Arnida, Jang WD et al (2006) Photochemical enhancement of transgene expression by polymeric micelles incorporating plasmid DNA and dendrimer-based photosensitizer. J Drug Target 14(6):413–424

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama N, Jang WD, Kataoka K (2007) Supramolecular nanocarriers integrated with dendrimers encapsulating photosensitizers for effective photodynamic therapy and photochemical gene delivery. New J Chem 31(7):1074–1082

    Article  CAS  Google Scholar 

  • Nishiyama N, Morimoto Y, Jang WD et al (2009) Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy. Adv Drug Deliv Rev 61(4):327–338

    Article  PubMed  CAS  Google Scholar 

  • Oba M, Fukushima S, Kanayama N et al (2007) Cyclic RGD peptide-conjugated polyplex micelles as a targetable gene delivery system directed to cells possessing alpha(v)beta(3) and alpha(v)beta(5) integrins. Bioconjug Chem 18(5):1415–1423

    Article  PubMed  CAS  Google Scholar 

  • Otsuka H, Nagasaki Y, Kataoka K (2012) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 64:246–255

    Article  Google Scholar 

  • Owens DE 3rd, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102

    Article  PubMed  CAS  Google Scholar 

  • Park JH, von Maltzahn G, Xu MJ et al (2010) Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc Natl Acad Sci U S A 107(3):981–986

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  PubMed  CAS  Google Scholar 

  • Peiris PM, Toy R, Doolittle E et al (2012) Imaging metastasis using an integrin-targeting chain-shaped nanoparticle. ACS Nano 6(10):8783–8795

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peppas NA (2013) Historical perspective on advanced drug delivery: how engineering design and mathematical modeling helped the field mature. Adv Drug Deliv Rev 65(1):5–9

    Article  PubMed  CAS  Google Scholar 

  • Perry JL, Herlihy KP, Napier ME et al (2011) PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc Chem Res 44(10):990–998

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Plummer R, Wilson RH, Calvert H et al (2011) A phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer 104(4):593–598

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Poon Z, Chang D, Zhao XY et al (2011) Layer-by-layer nanoparticles with a pH-Sheddable layer for in vivo targeting of tumor hypoxia. ACS Nano 5(6):4284–4292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Popovic Z, Liu W, Chauhan VP et al (2010) A nanoparticle size series for in vivo fluorescence imaging. Angew Chem Int Ed 49(46):8649–8652

    Article  CAS  Google Scholar 

  • Qiao RR, Jia QJ, Huwel S et al (2012) Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano 6(4):3304–3310

    Article  PubMed  CAS  Google Scholar 

  • Rafi M, Cabral H, Kano MR et al (2012) Polymeric micelles incorporating (1,2-diaminocyclohexane)platinum (II) suppress the growth of orthotopic scirrhous gastric tumors and their lymph node metastasis. J Control Release 159(2):189–196

    Article  PubMed  CAS  Google Scholar 

  • Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36(7):887–913

    Article  CAS  Google Scholar 

  • Rhee M, Valencia PM, Rodriguez MI et al (2011) Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv Mater 23(12):H79–H83

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saad M, Garbuzenko OB, Minko T (2008) Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. Nanomedicine 3(6):761–776

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sarfati G, Dvir T, Elkabets M et al (2011) Targeting of polymeric nanoparticles to lung metastases by surface-attachment of YIGSR peptide from laminin. Biomaterials 32(1):152–161

    Article  PubMed  CAS  Google Scholar 

  • Saul JM, Annapragada AV, Bellamkonda RV (2006) A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J Control Release 114(3):277–287

    Article  PubMed  CAS  Google Scholar 

  • Sawant RR, Jhaveri AM, Koshkaryev A et al (2013) The effect of dual ligand-targeted micelles on the delivery and efficacy of poorly soluble drug for cancer therapy. J Drug Target 21(7):630–638

    Article  PubMed  CAS  Google Scholar 

  • Schroeder A, Heller DA, Winslow MM et al (2012) Treating metastatic cancer with nanotechnology. Nat Rev Cancer 12(1):39–50

    Article  CAS  Google Scholar 

  • Simon U (2013) Nanoparticle self-assembly bonding them all. Nat Mater 12(8):694–696

    Article  PubMed  CAS  Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR et al (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20

    Article  PubMed  CAS  Google Scholar 

  • Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904

    Article  PubMed  CAS  Google Scholar 

  • Su WP, Cheng FY, Shieh DB et al (2012) PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells. Int J Nanomedicine 7:4269–4283

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Svenson S (2012) Clinical translation of nanomedicines. Curr Opin Solid State Mater Sci 16(6):287–294

    Article  CAS  Google Scholar 

  • Takahashi A, Yamamoto Y, Yasunaga M et al (2013) NC-6300, an epirubicin-incorporating micelle, extends the antitumor effect and reduces the cardiotoxicity of epirubicin. Cancer Sci 104(7):920–925

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Yang XJ, Dobrucki LW et al (2012) Aptamer-functionalized, ultra-small, monodisperse silica nanoconjugates for targeted dual-modal imaging of lymph nodes with metastatic tumors. Angew Chem Int Ed 51(51):12721–12726

    Article  CAS  Google Scholar 

  • Tong R, Hemmati HD, Langer R et al (2012) Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J Am Chem Soc 134(21):8848–8855

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 9(2):E128–E147

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tosi G, Ruozi B, Belletti D et al (2013) Brain-targeted polymeric nanoparticles: in vivo evidence of different routes of administration in rodents. Nanomedicine 8(9):1373–1383

    Article  PubMed  CAS  Google Scholar 

  • Uchino H, Matsumura Y, Negishi T et al (2005) Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br J Cancer 93(6):678–687

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Utada AS, Chu LY, Fernandez-Nieves A et al (2007) Dripping, jetting, drops, and wetting: the magic of microfluidics. MRS Bull 32(9):702–708

    Article  CAS  Google Scholar 

  • Vachutinsky Y, Oba M, Miyata K et al (2011) Antiangiogenic gene therapy of experimental pancreatic tumor by sFlt-1 plasmid DNA carried by RGD-modified crosslinked polyplex micelles. J Control Release 149(1):51–57

    Article  PubMed  CAS  Google Scholar 

  • Valencia PM, Farokhzad OC, Karnik R et al (2012) Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat Nanotechnol 7(10):623–629

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Valle JW, Armstrong A, Newman C et al (2011) A phase II study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Invest New Drugs 29(5):1029–1037

    Article  PubMed  CAS  Google Scholar 

  • Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26(5):1025–1058

    Article  PubMed  CAS  Google Scholar 

  • Veiseh O, Sun C, Fang C et al (2009) Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res 69(15):6200–6207

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Venkataraman S, Hedrick JL, Ong ZY et al (2011) The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev 63(14–15):1228–1246

    Article  PubMed  CAS  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6(1):12–21

    Article  PubMed  CAS  Google Scholar 

  • Voura EB, Jaiswal JK, Mattoussi H et al (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10(9):993–998

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Uludag H (2008) Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Expert Opin Drug Deliv 5(5):499–515

    Article  PubMed  CAS  Google Scholar 

  • Wang ZH, Yu Y, Dai WB et al (2013) A specific peptide ligand-modified lipid nanoparticle carrier for the inhibition of tumor metastasis growth. Biomaterials 34(3):756–764

    Article  PubMed  CAS  Google Scholar 

  • Werner ME, Karve S, Sukumar R et al (2011) Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials 32(33):8548–8554

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Chenna V, Hu C et al (2012) Polymeric nanoparticle-encapsulated hedgehog pathway inhibitor HPI-1 (NanoHHI) inhibits systemic metastases in an orthotopic model of human hepatocellular carcinoma. Clin Cancer Res 18(5):1291–1302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yan B, Boyer JC, Branda NR et al (2011) Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J Am Chem Soc 133(49):19714–19717

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Hendricks W, Liu GS et al (2013) A nanoparticle formulation that selectively transfects metastatic tumors in mice. Proc Natl Acad Sci U S A 110(36):14717–14722

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang GD, Harada A, Nishiyama N et al (2003) Polyion complex micelles entrapping cationic dendrimer porphyrin: effective photosensitizer for photodynamic therapy of cancer. J Control Release 93(2):141–150

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Radovic-Moreno AF, Alexis F et al (2007) Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2(9):1268–1271

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Fang H, Chen Z et al (2008) Shape effects of nanoparticles conjugated with cell-penetrating peptides (HIV Tat PTD) on CHO cell uptake. Bioconjug Chem 19(9):1880–1887

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang J, Wu LB, Chan HK et al (2011) Formation, characterization, and fate of inhaled drug nanoparticles. Adv Drug Deliv Rev 63(6):441–455

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y (2012) Light-responsive block copolymer micelles. Macromolecules 45(9):3647–3657

    Article  CAS  Google Scholar 

  • Zhao C, Feng Q, Dou Z et al (2013) Local targeted therapy of liver metastasis from colon cancer by galactosylated liposome encapsulated with doxorubicin. PLoS One 8(9):e73860

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Mi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Mi, P., Nishiyama, N. (2014). Polymeric Nanocarriers for Cancer Therapy. In: Alonso, M., Garcia-Fuentes, M. (eds) Nano-Oncologicals. Advances in Delivery Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-08084-0_3

Download citation

Publish with us

Policies and ethics