Advertisement

Agent-Based Nonlocal Social Systems: Neurodynamic Oscillations Approach

  • Darius Plikynas
  • Saulius Masteika
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8531)

Abstract

This work addresses a conceptual problem – the lack of a multidisciplinary connecting paradigm, which could link fragmented research in the fields of neuroscience, artificial intelligence (AI), multi-agent systems (MAS) and social simulation domains. The need for a common multidisciplinary research framework arises essentially because these fields share a common object of investigation and simulation, i.e. individual and collective behavior. Based on the proposed conceptually novel social neuroscience paradigm (OSIMAS), we envisage social systems emerging from the coherent neurodynamical processes taking place in the individual mind-fields. For the experimental validation of the biologically inspired OSIMAS paradigm we have designed a framework of EEG based experiments. Some benchmark EEG tests for the chosen mind states have been provided in the current paper.

Keywords

oscillating agent group neurodynamics social neuroscience multiagent systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alecu, L., Frezza-Buet, H., Alexandre, F.: Can self-organisation emerge through dynamic neural fields computation? Connection Science 23(1), 1–31 (2011)CrossRefGoogle Scholar
  2. 2.
    Bandini, S., Manzoni, S., Vizzari, G.: Toward a platform for multilayered multi-agent situated system based simulations: focusing on field diffusion. Applied Artificial Intelligence: An International Journal 20(2-4), 327–351 (2007)CrossRefGoogle Scholar
  3. 3.
    Bunge, S.A., Kahn, I.: Cognition: An Overview of Neuroimaging Techniques. Encyclopedia of Neuroscience, 1063–1067 (2009)Google Scholar
  4. 4.
    Cacioppo, J.T., Decety, J.: Social neuroscience: challenges and opportunities in the study of complex behavior. Annals of the New York Academy of Sciences (special issue), 162–173 (2011)Google Scholar
  5. 5.
    Camurri, M., Mamei, M., Zambonelli, F.: Urban Traffic Control with Co-Fields. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 239–253. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Centola, D.: The spread of behavior in an online social network experiment. Science 329(5996), 1194–1197 (2010)CrossRefGoogle Scholar
  7. 7.
    Grinberg-Zylberbaum, Ramos: Patterns of inter-hemispheric correlation during human communication. International Journal of Neuroscience 36, 41–53 (1987)CrossRefGoogle Scholar
  8. 8.
    Grinberg-Zylberbaum, J., Delaflor, M., Attie, L., Goswami, A.: The Einstein-Podolsky-Rosen Paradox in the Brain: The Transferred Potential. Physics Essays 7(4), 422–428 (1994)CrossRefGoogle Scholar
  9. 9.
    Haan, M., Gunnar, M.R.: Handbook of Developmental Social Neuroscience. The Guilford Press (2009)Google Scholar
  10. 10.
    Hansmann, U.: Pervasive Computing: The Mobile World, 2nd edn., p. 448. Springer (2003)Google Scholar
  11. 11.
    Lam, A.: Tacit Knowledge, Organizational Learning and Societal Institutions: An Integrated Framework. Organization Studies 21(3), 487–513 (2000)CrossRefGoogle Scholar
  12. 12.
    Laszlo, V.S.: The Basic Writings of C. G. Jung. The Modern Library (1959)Google Scholar
  13. 13.
    Libet, B.: A testable field theory of mind-brain interaction. Journal of Consciousness Studies 1(1), 119–226 (1994)Google Scholar
  14. 14.
    Lindenberger, U., Li, S.C., Gruber, W., Muller, V.: Brains swinging in concert: cortical phase synchronization while playing guitar. BMC Neuroscience 10(22), 1471–2202 (2009)Google Scholar
  15. 15.
    Mamei, M., Zambonelli, F.: Field-Based Coordination for Pervasive Multiagent Systems. Springer, Berlin (2006)zbMATHGoogle Scholar
  16. 16.
    McFadden, J.: Synchronous Firing and Its Influence on the Brain’s Electromagnetic Field. Journal of Consciousness Studies 9(4), 23–50 (2002)MathSciNetGoogle Scholar
  17. 17.
    Nagpal, R., Mamei, M.: Engineering amorphous computing systems. In: Methodol. Softw. Engin. Agent Systems, p. 505. Springer (2004)Google Scholar
  18. 18.
    Newandee, D.A., Stanley, M.S., Reisman, S.: Measurement of the Electroencephalogram (EEG) Coherence in Group Meditation. In: Bioengineering Conference Proceedings of the IEEE Twenty-Second Annual Northeast, pp. 95–96 (1996)Google Scholar
  19. 19.
    Nummenmaa, L., Glerean, E., Viinikainen, M., Joskelinen, I.P., Hari, R., Sams, M.: Emotions promote social interaction by synchronizing brain activity across individuals. PNAS 109(24), 9599–9604 (2012)CrossRefGoogle Scholar
  20. 20.
    Oppenheim, J., Wehner, S.: The uncertainty principle determines the non-locality of quantum mechanics. Science 330(6007), 1072–1074 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Orme-Johnson, D.W., Oates, R.M.: A Field-Theoretic View of Consciousness: Reply to Critics. Journal of Scientific Exploration 23(2), 1–28 (2009)Google Scholar
  22. 22.
    Paoli, F.D., Vizzari, G.: Context dependent management of field diffusion: an experimental framework. In: Proc. of the Workshop from Object to Agents, WOA (2003)Google Scholar
  23. 23.
    Pessa, E., Vitello, G.: Quantum noise induced entanglement and chaos in the dissipative quantum model of brain. Int. J. Mod. Phys. B 18(6), 841–858 (2004)CrossRefGoogle Scholar
  24. 24.
    Pérez, J.B., et al. (eds.): Highlights on Practical Applications of Agents and Multi-Agent Systems. In: 10th International Conference on Practical Applications of Agents and Multi-Agent Systems. Springer (2012)Google Scholar
  25. 25.
    Plikynas, D.: A virtual field-based conceptual framework for the simulation of complex social systems. Journal of Systems Science and Complexity 23(2), 232–248 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Plikynas, D., Masteika, S., Basinskas, G., Kezys, D., Kumar, P., Laukaitis, A.: Social Systems in Terms of Coherent Individual Neurodynamics: Conceptual Premises and Experimental Scope. In: International Journal of General Systems (2014), doi:10.1080/03081079.2014.888552Google Scholar
  27. 27.
    Poslad, S.: Ubiquitous Computing: Smart Devices, Environments and Interactions, p. 502. Wiley (2009)Google Scholar
  28. 28.
    Pribram, K.H.: Brain and Perception: Holonomy and Structure in Figural Processing. Lawrence Erlbaum Associates, Hillsdale (1991)Google Scholar
  29. 29.
    Qi, D., Sun, R.: A multi-agent system integrating reinforcement learning, bidding and genetic algorithms. Web Intelligence and Agent Systems 1(3-4), 187–202 (2003)Google Scholar
  30. 30.
    Radin, D.I.: Event-related electroencephalographic correlations between isolated human subjects. The Journal of Alternative and Complementary Medicine 10(2), 315–323 (2004)CrossRefGoogle Scholar
  31. 31.
    Raudys, Š.: Survival of intelligent agents in changing environments. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 109–117. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  32. 32.
    Reimers, M.: Local or distributed activation? The view from biology. Connection Science 23(2), 155–160 (2011)CrossRefGoogle Scholar
  33. 33.
    Servat, D., Drogoul, A.: Combining amorphous computing and reactive agent-based systems: a Paradigm for Pervasive Intelligence. In: Proc. first Int’l Joint Conf. on Autonomous Agents and Multiagent Systems, pp. 441–448 (2002)Google Scholar
  34. 34.
    Standish, L.J., Kozak, L., Johnson, L.C., Richards, T.: Electroencephalographic evidence of correlated event-related signals between the brains of spatially and sensory isolated human subjects. The Journal of Alternative and Complementary Medicine 10(2), 307–314 (2004)CrossRefGoogle Scholar
  35. 35.
    Thaheld, F.H.: An interdisciplinary approach to certain fundamental issues in the fields of physics and biology: towards a unified theory. BioSystems 80, 41–56 (2005)CrossRefGoogle Scholar
  36. 36.
    Travis, F.T., Orme-Johnson, D.W.: Field model of consciousness: EEG coherence changes as indicators of field effects. International Journal of Neuroscience 49, 203–211 (1989)CrossRefGoogle Scholar
  37. 37.
    Travis, F., Arenander, A.: Cross-sectional and longitudinal study of effects of transcendental meditation practice on interhemispheric frontal asymmetry and frontal coherence. Intern. J. Neuroscience 116, 1519–1538 (2006)CrossRefGoogle Scholar
  38. 38.
    Valente, T.W.: Network models of the diffusion of innovations. Comput. Math. Organ. Theory 2(2), 163–164 (1996)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Vitello, G.: My Double Unveiled: The Dissipative Quantum Model of Brain (Advances in Consciousness Research). John Benjamins Pub. Co., Amsterdam (2001)CrossRefGoogle Scholar
  40. 40.
    Wang, X., Tao, H., Xie, Z., Yi, D.: Mining social networks using wave propagation. Comput. Math. Organ. Theory (2012), doi:10.1007/s10588-012-9142-xGoogle Scholar
  41. 41.
    Zhang, Y., Wu, Y.: How behaviors spread in dynamic social networks. Comput. Math. Organ. Theory 18, 419–444 (2012), doi:10.1007/s10588-011-9105-7CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Darius Plikynas
    • 1
  • Saulius Masteika
    • 1
    • 2
  1. 1.Research and Development CenterKazimieras Simonavicius UniversityVilniusLithuania
  2. 2.Department of Informatics, Faculty of HumanitiesVilnius UniversityKaunasLithuania

Personalised recommendations