Advertisement

Delegating a Pairing Can Be Both Secure and Efficient

  • Sébastien Canard
  • Julien Devigne
  • Olivier Sanders
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8479)

Abstract

Bilinear pairings have been widely used in cryptographic protocols since they provide very interesting functionalities in regard of identity based cryptography, short signatures or cryptographic tools with complex properties. Unfortunately their implementation on limited devices remains complex and even if a lot of work has been done on the subject, the current results in terms of computational complexity may still be prohibitive. This is clearly not for today to find the implementation of a bilinear pairing in every smart card. One possibility to avoid this problem of efficiency is to delegate the pairing computation to a third party. The result should clearly be both secure and efficient. Regarding security, the resulting computation of a pairing e(A,B) by the third party should be verifiable by the smart card. Moreover, if the points A and/or B are secret at the beginning of the protocol, they should also be secret after its execution. Regarding efficiency, besides some specific cases, existing protocols for delegating a pairing are costlier than a true embedded computation inside the smart card. This is due to the fact that they require several exponentiations to check the validity of the result.

In this paper we first propose a formal security model for the delegation of pairings that fixes some weakness of the previous models. We also provide efficient ways to delegate the computation of a pairing e(A,B), depending on the status of A and B. Our protocols enable the limited device to verify the value received from the third party with mostly one exponentiation and can be improved to also ensure secrecy of e(A,B).

Keywords

pairings secure delegation elliptic curve 

References

  1. 1.
    Paulo, S.L.M., Barreto, S.D., Galbraith, C.O.: hEigeartaigh, and Michael Scott. Efficient pairing computation on supersingular abelian varieties. IACR Cryptology ePrint Archive, 375 (2004)Google Scholar
  2. 2.
    Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly groups. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 17–25. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    David Bernhard, Georg Fuchsbauer, Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi. Anonymous attestation with user-controlled linkability. IACR Cryptology ePrint Archive, 658 (2011)Google Scholar
  6. 6.
    Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM Conference on Computer and Communications Security 2004, pp. 168–177. ACM (2004)Google Scholar
  11. 11.
    Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in pairing groups. In: Selected Areas in Cryptography (2013) (to appear)Google Scholar
  12. 12.
    Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in pairing groups. IACR Cryptology ePrint Archive, 458 (2013)Google Scholar
  13. 13.
    Canard, S., Coisel, I., Devigne, J., Gallais, C., Peters, T., Sanders, O.: Toward Generic Method for Server-Aided Cryptography. In: Qing, S., Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 373–392. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Canard, S., Desmoulins, N., Devigne, J., Traoré, J.: On the implementation of a pairing-based cryptographic protocol in a constrained device. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 210–217. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  16. 16.
    Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure delegation of elliptic-curve pairing. IACR Cryptology ePrint Archive, 150 (2005)Google Scholar
  17. 17.
    Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure delegation of elliptic-curve pairing. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 24–35. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptology 23(2), 224–280 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics 156(16), 3113–3121 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Girault, M., Lefranc, D.: Server-aided verification: Theory and practice. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 605–623. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Transactions on Information Theory 52(10), 4595–4602 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Joux, A.: A one round protocol for tripartite diffie-hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  24. 24.
    Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing brezing-weng pairing-friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Kang, B.G., Lee, M.S., Park, J.H.: Efficient delegation of pairing computation. IACR Cryptology ePrint Archive, 259 (2005)Google Scholar
  26. 26.
    Lim, C.H., Lee, P.J.: Server (Prover/Signer)-aided verification of identity proofs and signatures. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 64–78. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  27. 27.
    Matsumoto, T., Kato, K., Imai, H.: Speeding up secret computations with insecure auxiliary devices. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 497–506. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  28. 28.
    Sánchez, A.H., Rodríguez-Henríquez, F.: NEON implementation of an attribute-based encryption scheme. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 322–338. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  29. 29.
    Scott, M.: Unbalancing pairing-based key exchange protocols. Cryptology ePrint Archive, Report 2013/688 (2013), http://eprint.iacr.org/
  30. 30.
    Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.: On the final exponentiation for calculating pairings on ordinary elliptic curves. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. 31.
    Tsang, P.P., Chow, S.S.M., Smith, S.W.: Batch pairing delegation. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 74–90. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  32. 32.
    Yao, A.C.-C.: Protocols for Secure Computations (extended abstract). In: FOCS, pp. 160–164. IEEE Computer Society (1982)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sébastien Canard
    • 1
  • Julien Devigne
    • 1
    • 2
  • Olivier Sanders
    • 1
    • 3
  1. 1.Applied Crypto GroupOrange LabsCaenFrance
  2. 2.UCBN, GREYCCaenFrance
  3. 3.École normale supérieure, CNRS & INRIAParisFrance

Personalised recommendations