
Delegating a Pairing Can Be Both

Secure and Efficient

Sébastien Canard1, Julien Devigne1,2, and Olivier Sanders1,3

1 Orange Labs, Applied Crypto Group, Caen, France
2 UCBN, GREYC, Caen, France

3 École normale supérieure, CNRS & INRIA, Paris, France

Abstract. Bilinear pairings have been widely used in cryptographic
protocols since they provide very interesting functionalities in regard
of identity based cryptography, short signatures or cryptographic tools
with complex properties. Unfortunately their implementation on limited
devices remains complex and even if a lot of work has been done on the
subject, the current results in terms of computational complexity may
still be prohibitive. This is clearly not for today to find the implemen-
tation of a bilinear pairing in every smart card. One possibility to avoid
this problem of efficiency is to delegate the pairing computation to a
third party. The result should clearly be both secure and efficient. Re-
garding security, the resulting computation of a pairing e(A,B) by the
third party should be verifiable by the smart card. Moreover, if the points
A and/or B are secret at the beginning of the protocol, they should also
be secret after its execution. Regarding efficiency, besides some specific
cases, existing protocols for delegating a pairing are costlier than a true
embedded computation inside the smart card. This is due to the fact that
they require several exponentiations to check the validity of the result.

In this paper we first propose a formal security model for the delega-
tion of pairings that fixes some weakness of the previous models. We also
provide efficient ways to delegate the computation of a pairing e(A,B),
depending on the status of A and B. Our protocols enable the limited
device to verify the value received from the third party with mostly one
exponentiation and can be improved to also ensure secrecy of e(A,B).

Keywords: pairings, secure delegation, elliptic curve.

1 Introduction

Pairings. Since the publication of the paper by Joux [23], elliptic-curve bilinear
pairings have been frequently used in cryptography because they offer more
functionalities than RSA groups while keeping a lower size. One of their most
famous application was due to Boneh and Franklin [8] who used them to solve
the open problem of constructing an efficient identity-based encryption scheme.
Other known usefulness of pairings is their capacity to shorten signatures [9,10,6]
and to obtain constructions in the standard model for cryptographic tools with
complex properties (see e.g. [5]).

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 549–565, 2014.
c© Springer International Publishing Switzerland 2014

550 S. Canard, J. Devigne, and O. Sanders

In the following, we more generally consider a bilinear environment, which
corresponds to a set of two additive groups G1, G2 and one multiplicative group
GT , all of known prime order l, along with an efficiently computable bilinear map
e : G1 × G2 → GT . The way to describe such bilinear map has first been pro-
posed by Miller in his unpublished paper. This work was next improved in many
other ones, especially regarding the way to efficiently compute such mathemati-
cal function. Unfortunately, despite several improvements (one can find some of
them in [2,3]), the computational cost of a pairing still remains high and may be
prohibitive for restricted devices such as smart cards or RFID tags/sensor nodes.
This may be a problem in some practical applications where the properties of a
pairing are very useful.

Delegation. One way to solve this problem is to delegate the pairing compu-
tation to a more powerful entity such as a mobile phone (which is now possible
in an efficient way [14,28]), a computer or a server. But this cannot be done at
the detriment of the security. Indeed, if a smart card may today be considered
as secure, this does not remain true for a mobile phone, a computer or a server
that may be controlled by some dishonest entity (by the way of e.g. a malware).

In the setting of the delegation of a pairing, two security properties could be
taken into account. The first one is secrecy, requiring that the more powerful en-
tity should not learn anything about the inputs of the pairings (unless they are
public). The second one is verifiability (also called correctness) and requires that
the restricted device cannot accept a wrong value for the pairing which is dele-
gated to the more powerful entity. We emphasize that a delegation protocol that
does not ensure verifiability may cause severe security problems. As evidence, if
the pairing occurs in the verification algorithm of some digital signature scheme,
as the ones from [9,7], an incorrect value may lead for the restricted device to
accept an invalid signature.

Related Work. The delegation of cryptographic operations is a technique which
has been known since a long time (see e.g. [27,15,26]) and it now exists some
constructions in the generic case [32,13]. The particular case of the pairing com-
putation has first been studied, as far as we know, in a work by Girault and
Lefranc [20]. But they have only considered the secrecy of the computation.
Verifiable protocols for delegating a pairing e(A,B) have first been provided by
Chevallier-Mames et al. ([16,17]) and later by Kang et al. [25]. However their
efficiency depends on the status of A and B. More specifically, their protocols re-
main rather efficient as long as one of the involved points is constant. Indeed, the
online phase of the proposal for variable A and B in [16] (resp. [25]) necessitates
5 (resp. 3) exponentiations in GT , 3 tests of membership in GT (resp. 3), plus
additional scalar multiplications in G1 and G2, for the case of secret values. The
proposal in [16] for a verifiable (but for public variable values) pairing delegation
requires 3 exponentiations in GT and 3 tests of membership in GT . Even if the
computational costs of a pairing and of group operations depend on the choice of
the parameters, the recent results of [28], implementing an optimal-Ate pairing

Delegating a Pairing Can Be Both Secure and Efficient 551

over Barreto-Naehrig curves [4] (the most popular choice), seem to confirm that,
regarding efficiency, it is better to directly embed the pairing computation inside
the restricted device than using these solutions. Otherwise, the main contribu-
tion will be the save of area that is required to implement a pairing in a smart
card, which is certainly a good point, but not enough in most contexts.

In [31], the authors have considered the more general case of delegating sev-
eral pairings all at once. They pointed out the lack of formal security models
in the previous works and therefore proposed a candidate for it. They have also
described a protocol fulfilling this model but which can only handle one variable
point (the other one has to be constant). Unfortunately, as illustrated by the
results of the previous works, the trickiest case is the one where both A and B
are variable which is commonly found in the verification of signature schemes
[9,7] where verifiability is particularly relevant.

Our Methodology. For variable A and B, both papers [16,25] make use of
the same methodology. They started by providing a protocol for secret points A
and B, and they then convert it into a protocol where A and/or B are publicly
known. We argue that it is far more interesting to convert a protocol for public
A and B into a protocol for secret A and B. Indeed, if we assume the existence
of a verifiable delegation protocol P to compute the pairing e(A,B) for public
A and B, then the case of the protocol P ′ for secret A and B can be treated,
as in [20], by simply computing A′ ← [u]A and B′ ← [v]B for random u and v,
and then running P with A′ and B′. From e(A′, B′), it is then easy to recover

e(A,B) ← e(A′, B′)(uv)
−1

, and A′ and B′ need not to be secret. Then, the
conversion from P into P ′ mostly requires one additional exponentiation in GT .
Moreover, the result is obviously secure.

Curiously, the opposite is not true. If we consider a secure (verifiable and
secret) pairing delegation protocol P ′ for secret values, the execution of this
protocol for public values of A and B is not necessarily true, in particular de-
pending on the kind of verifiability fulfilled by P ′. As evidence, we show in
Section 3, using the protocol in [25], that this may permit the adversary to
break the verifiability property from the knowledge of the secret points. We con-
sequently describe a complete security model for pairing delegation. Our model
is close to the one of [31] but with some necessary modifications, especially for
the secrecy property.

In this paper, we will then focus on the design of an efficient scheme for pub-
lic variable points since it leads to a scheme for secret ones. We will also study
a specific case where we can ensure both secrecy and verifiability with better
efficiency than the previous generic conversion.

Organization of the Paper. Section 2 gives some preliminaries for our study
and Section 3 provides a security model for the delegation of a pairing. We
describe in Section 4 verifiable protocols for public variable A and B, which
necessitate the low-power entity to only compute one exponentiation (in the
most important group). We explain in Section 5 how to achieve secrecy using the

552 S. Canard, J. Devigne, and O. Sanders

above idea but also provide an improved protocol for a specific case. Eventually,
our last section compares our work with related ones and gives an example of
the expected gain for a specific family of curve.

2 Preliminaries

In this section we recall some necessary definitions that will be used throughout
the document.

Some Notations. In the following,
$← corresponds to a random choice, while

← is used to indicate an assignment of a variable.

Bilinear Groups. Bilinear groups are a set of three groups G1,G2 (with addi-
tive notations, as for elliptic curves) and GT (with multiplicative notation), all
of prime order l, along with a bilinear map e : G1×G2 → GT with the following
properties:

1. for allX1 ∈ G1, X2 ∈ G2 and a, b ∈ Zl we have e([a]X1, [b]X2) = e(X1, X2)
ab;

2. for X1 �= 1G1 and X2 �= 1G2 , e(X1, X2) �= 1GT ;
3. e is efficiently computable;

where 1G1 (resp. 1G2 and 1GT) is the neutral element of the group G1 (resp. G2

and GT).

Elliptic Curve Pairings. Our first protocol (see section 4.1) works for any
bilinear groups while the second one (see section 4.2) works only for pairing
computations on elliptic curves (which is currently the common case) and thus
requires some additional definitions. We refer to [19,18] for a more extensive
background on pairings.

Let p be a prime number. Let E(Fp) be an elliptic curve over the field Fp. We
usually define G1 as a subgroup of E(Fp), G2 as a subgroup of E(Fpk) and GT

as a subgroup of (Fpk)∗, where k, called the embedding degree, is the smallest
integer such that l divides pk − 1.

Remark 1. In cryptography, the family of Tate’s algorithms [19] is most of the
time used to compute a pairing. These algorithms are divided in two parts: the
Miller loop and the final exponentiation. This last step makes use of the exponent

defined as c = pk−1
l . In the following, ∀ α ∈ GT , α̃ will denote an element of

(Fpk)∗ such that α̃c = α. Thus, considering that α̃ is the output of the Miller’s
algorithm, α corresponds to the expected pairing value.

Testing Membership in GT . As said in the introduction, existing
works [16,25,31] necessitate to test whether a value α belongs to GT or not.
The simplest way to test this membership is to check whether αl = 1 or not.
However, this method requests one exponentiation in Fpk . As we will explain
later (Remark 6), the only purpose of this check in our protocols (or the ones

Delegating a Pairing Can Be Both Secure and Efficient 553

of [16,25,31]) is to ensure that the server does not return an element of Fpk of
small order. In [29], the author provides a very efficient way to avoid such a case.
For example, for k = 12 (the usual choice for a 128-bit security), since pairing
values are elements of the cyclotomic subgroup of order φ12(p) = p4−p2+1, one

may check membership of α to this subgroup by testing if α · αp4

= αp2

. Using
the Frobenius action this can be done almost for free. However, this is useful as

long as the cofactor h := φ12(p)
l does not have small factors (for example, if h is

prime and greater than l) which requires a special care when choosing the curve
parameters. In the following, we will thus distinguish a test of membership from
an exponentiation in Fpk .

3 Security Model

In this section, we give the security properties that we require for a secure pairing
delegation. Let A ∈ G1 and B ∈ G2. We consider a restricted device, usually
called a client, wanting to obtain the output of e(A,B). For this purpose, the
client interacts with a more powerful device, usually called the server, which is
not necessarily trusted. We thus need to describe an interactive protocol between
the client and the server where the output for the client is e(A,B).

3.1 Syntax

A pairing delegation scheme consists of the three algorithms defined below, where
params are some public parameters (see Remark 2 below).

– Init(params,A,B): this probabilistic algorithm takes as inputs two points
A and B and outputs σ, sent to the server to compute with, and τ , kept
secret by the client.

– Compute(params, σ): this deterministic algorithm is run by the server to
compute α, which value is sent to the client.

– Extract(params, σ, τ, α): this algorithm is run by the client which uses the
known secret (τ) and public values (σ) to check whether the computations
(α) performed by the server are valid or not. The client finally outputs either
a value μ (equals to e(A,B) in the former case) or an error message ⊥ (in
the latter case).

Remark 2. We do not add a Setup algorithm since we assume that our delegation
scheme will be used to compute pairings in cryptographic protocols where the
public parameters params (containing, for example, a description of the bilinear
groups) are already defined.

In practice, there are mainly two cases, considering the values A and B. In
the first case, A or B is a constant value that never changes from one pairing
computation to another, while the other is said variable. The other case is when
both A and B are variables.

554 S. Canard, J. Devigne, and O. Sanders

3.2 Security Notions

Regarding security, the authors of [16] and [25] have considered the three fol-
lowing informal security notions: (i) completeness (an honest client, interacting
with an honest server, obtains e(A,B) after completion of the protocol), (ii)
correctness (a client interacting with a cheating server will output ⊥ with over-
whelming probability) and (iii) secrecy (even a dishonest server cannot learn any
information about A and B).

As in [31], we rather define our security notions through experiments since
they describe more precisely the power and knowledge of the adversary. Our
correctness/verifiability (see the remark below) experiment is similar with the
one from [31]. However, we propose a stronger definition of secrecy. Our security
notions make use of the following oracle.

– OSim(params,A,B): is an oracle that executes the client’s side of the pro-
tocol. In this case, the adversary plays the role of the corrupted server.

Remark 3. In this paper we will talk about verifiability rather than correct-
ness since the latter is frequently used to denote completeness in cryptographic
protocols.

Completeness. Informally, our definition of completeness is the same as the
one provided by [16]. More formally, we define the completeness experiment
Expcomp

A (params) as follows, where AOSim denotes an adversary A having an
unconditional access to the OSim oracle, in an interactive way.

1. (A,B) ← AOSim(params).
2. (σ, τ) ← Init(params,A,B).
3. α ← Compute(params, σ).
4. μ ← Extract(params, σ, τ, α).
5. If μ = e(A,B) then return 1.

A pairing protocol is complete if the probability Pr[Expcomp
A (params) = 1] is

overwhelming for all A.

Verifiability. Regarding the literature on the subject, the definitions that one
can find in [16,25] on the verifiability property are not very satisfying. In fact,
they do not clearly specify the status (known or unknown) of A and B w.r.t. the
server. Indeed, it seems that the status of A and B w.r.t. the adversary in the
experiment related to the verifiability property depends, in their definition, of
their status w.r.t. the server in the real protocol. Then, the probability of success
of an adversary against the verifiability property may depend on the one against
the secrecy, which is not very common in security where property definitions are
usually independent one with each other.

A remark on related work security. In fact, this may even lead to some
defaults related to security, and we can illustrate that using [25]. Let us consider
a server being able to recover the secret points A and B with non-negligible

Delegating a Pairing Can Be Both Secure and Efficient 555

probability λ for the protocol described in [25] (see Figure 1). It is then possible
to show that such adversary is able to break the verifiability of this protocol
with the same probability λ.

Indeed, if the server sends (instead of specified values), α3 = e(R1, R2)
1+z

and α4 = e(T1, T2).e(A,B)z , for a randomly chosen z, then the client will output
e(A,B)1+z instead of e(A,B) since α1, α2, α3 and α4 still satisfy the last equality
test on α4. The adversary will then succeed against the verifiability property with
probability at least λ.

As a conclusion, we think that it is better to consider another definition for the
verifiability property, which does not depend on the status (known or unknown)
of A and B.

client (A,B,G1, G2, GT = e(G1, G2)) server(G1, G2)

g1, g2
$← Zl

R1 ← [g1]A; R2 ← [g2]B
R1, R2−−−−−−−−→

α1 ← (R1, G2); α2 ← (G1, R2);
α3 ← e(R1, R2)

α1, α2, α3←−−−−−−−−
For i ∈ {1, 2, 3}:

If αi /∈ GT , return ⊥
r1, r2

$← Zl

T1 ← A+ [r1]G1; T2 ← B + [r2]G2

T1, T2−−−−−−−−→
α4 ← e(T1, T2)

α4←−−−−−−−−
If α4 = α

(g1g2)
−1

3 · αg−1
1 r2

1 · αg−1
2 r1

2 ·Gr1r2
T

Return μ := α
(g1g2)

−1

3

Else, return ⊥

Fig. 1. The Kang et al protocol [25] for secret A and B

Formal definition of verifiability. Informally, verifiability requires that
the client, even interacting with a dishonest server, will not output a wrong value
for e(A,B). We define the verifiability experiment Expverif

A (params) as follows.

1. (A,B, st) ← AOSim(params).
2. (σ, τ) ← Init(params,A,B).
3. α ← AOSim(params, σ, st).
4. μ ← Extract(params, σ, τ, α).
5. If μ = ⊥ or μ = e(A,B) then return 0.
6. Else return 1.

556 S. Canard, J. Devigne, and O. Sanders

We define Advverif
A (params) = Pr[Expverif

A (params) = 1]. A pairing delega-
tion protocol is verifiable if, for any probabilistic polynomial time adversary, this
advantage is negligible.

Secrecy. Informally, secrecy requires that the server cannot learn any infor-
mation about A or B. We define the secrecy experiment Expsec

A (params) as
follows.

1. (A0, B0, A1, B1, st) ← AOSim(params).

2. b
$← {0, 1}.

3. (σ, τ) ← Init(params,Ab, Bb).
4. b∗ ← AOSim(params, σ, st).
5. If b∗ = b then return 1. Else return 0.

We define Advsec
A (params) = |Pr[Expsec

A (params) = 1]− 1
2 |. A pairing dele-

gation protocol is secret if, for any probabilistic polynomial time adversary, this
advantage is negligible.

In [31], the adversary against the secrecy property must distinguish a valid
transcript from a simulated one without knowing the secret points. Our model
is then stronger since it allows the adversary to choose the challenge points A
and B. It is similar to the IND-CPA notion for public key encryption schemes.

4 Protocols with Public A and B

We provide in this section two efficient protocols to delegate the computation
of public A and B, even if both of them are variable. For clarity’s sake we first
describe a protocol whose efficiency is equivalent to one exponentiation and one
test of membership and then show how to modify it to suit the case where this
last operation cannot be performed cheaply.

4.1 A Protocol with Test of Membership

We assume, as the authors of [16], [25] and [31], that the public parameters
contain 3 elements: G1 ∈ G1, G2 ∈ G2 and ρ = e(G1, G2).

Remark 4. Papers [16,25] do not explain how the client obtains the values G1, G2

and ρ. As mentioned in [31], there are two ways to treat this. For example, the
client could generate G1 and G2 and compute ρ once for all. This computation
can also be done by a trusted authority, which one could then embed the val-
ues in the client. In the latter case, there is no longer need for implementing
the whole pairing computation algorithm in the client since our protocols only
require group operations in the bilinear groups. This may justify, besides the
efficiency, the use of our solutions since it saves some area needed to implement
cryptographic operations. Indeed, there exist several different pairings, such as
the Weil pairing, the Tate pairing or one of its variants [1,22]. Our protocols are
then compatible with all of them as long as the values e(G1, G2) (one for each
type of pairing) are loaded in the client’s memory.

Delegating a Pairing Can Be Both Secure and Efficient 557

The three algorithms defining our pairing delegation scheme are described in
Figure 2 and enable the client to delegate the computation of e(A,B) with
public A �= 1G1 and B �= 1G2 .

client (A,B,G1, G2, ρ) server(A,B)

Init(params,A,B):

x1, x2
$← Zl

X1 ← [x1]G1; X2 ← [x2]G2

χ ← ρx1·x2

T1 ← [x−1
2]A+X1; T2 ← [x−1

1]B +X2

Return (σ, τ) := ((T1, T2), (x1, x2))
σ−−−−−→

Compute(params, σ):

α1 ← e(T1, T2)[e(G1, B)e(A,G2)]
−1

α2 ← e(A,B)
Return α := (α1, α2)

α←−−−−−
Extract(params,σ, τ, α):

If α1 = χ · α(x1.x2)
−1

2 and α2 ∈ GT

Return μ := α2

Else, return ⊥

Fig. 2. Delegation protocol for public A and B

Computational Cost. Since X1, X2 and χ are easily pre-computable (they do
not need the knowledge of A and B), the client only has to compute online a
scalar multiplication in G1, another one in G2, an exponentiation in GT and a
test of membership in GT . The efficiency of our method strongly depends on
the parameters of the bilinear groups, especially if they allow us to use the idea
from [29] to avoid an exponentiation in Fpk for the test of membership (see end
of Section 2). To get an idea of the order of magnitude of the computational cost,
one may look at the results from [12,11]. For every family of curves, their timings
indicate that the cost of our protocol (assuming that the test of membership in
GT is cheap) is significantly smaller than the one of a pairing. One example (for
an optimal ate pairing on a KSS-18 curve [24]) is given in Table 1 at the end of
this paper.

Security. As A and B are public, we only need to verify that our protocol en-
sures the completeness and the verifiability properties.

Completeness. The protocol is complete since:

α1 = e([x−1
2]A+X1, [x

−1
1]B +X2)[e(G1, B)e(A,G2)]

−1

= e(A,B)(x1.x2)
−1

e(X1, X2) = χ · α(x1·x2)
−1

2 .

558 S. Canard, J. Devigne, and O. Sanders

Verifiability. The main idea of our protocol is to request from the server the
computations of α1 and α2, involved in a relation with the secret value τ . So, an
adversary trying to cheat the client has to provide α′

1 and α′
2 satisfying the same

relation. In the following, we argue that he is unable to do so, which ensures the
verifiability of our protocol.

Remark 5. Our following proof is verified in the generic group model (extended
to the bilinear setting). Even if we do not really provide a formal theorem that
the underlying new assumption is valid, the methodology we adopt in the sequel
is quite similar to a proof in the generic group model.

In the verifiability experiment, the server is controlled by the adversary who
wants to convince the client to accept a wrong value for e(A,B). This means
that the adversary sends an element α′

2 �= α2 = e(A,B) belonging to GT (since
we test membership in this subgroup). So we have α′

2 = α2.δ for some δ ∈ GT .
It follows that the server has to send α′

1 = α1 · γ verifying:

α′
1 = χ · (α′

2)
(x1·x2)

−1 ⇐⇒ α1 · γ = χ · (α2 · δ)(x1·x2)
−1 ⇐⇒ γ = δ(x1·x2)

−1

.

For the adversary, breaking the verifiability is then equivalent to find any
two values γ, δ ∈ GT such that γ = δ(x1·x2)

−1

. However, finding such a pair
(δ, δ(x1·x2)

−1

) ∈ G2
T does not match any standard computational assumption.

So we cannot directly conclude. We then study the probability of recovering
(δ, δ(x1·x2)

−1

) by using combinations of elements involved in the protocol. We
consider the case of type 3 pairings (i.e. there is no efficiently computable iso-
morphism between G1 and G2) in order to reduce the number of possible com-
binations. However, our proof can also be done for other types of pairings.

Let a, b, x1, x2 ∈ Zl be such that:

A = [a]G1, B = [b]G2, X1 = [x1]G1 and X2 = [x2]G2.

Our security model defined in the previous section allows the adversary to
choose A and B and we consequently assume that he knows a and b. Since we
work with bilinear groups, we assume that the adversary is only able to compute
pairings or algebraic combinations in G1 or G2, i.e. the adversary is only able
to choose a1, a2, a3, a4 ∈ Zl and computes:

e([a1]G1 + [a2]T1, [a3]G2 + [a4]T2) = e(G1, G2)
s·(x1·x2)

−1+t,

with s = a2a4ab and t = a1a3 + a1a4b(x1)
−1 + a1a4x2 + a2a3a(x2)

−1 + a2a4a+
a2a3x1 + a2a4b + a2a4x1x2. The only way (unless to guess (x1 · x2)

−1 with

probability 1
l) for the server to find a suitable pair (δ, δ(x1·x2)

−1

) is then to
recover:

(e(G1, G2)
s, e(G1, G2)

s·(x1·x2)
−1

)

which means that it must find a1, a2, a3, a4 cancelling t but not s. The map

ψ : (Zl)
4 → Zl

(a1, ..., a4)
→ t

is a quadratic form, its matrix M is:

Delegating a Pairing Can Be Both Secure and Efficient 559

2−1

⎛

⎜

⎜

⎝

0 0 1 b(x1)
−1 + x2

0 0 a(x2)
−1 + x1 a+ b+ x1x2

1 a(x2)
−1 + x1 0 0

b(x1)
−1 + x2 a+ b+ x1x2 0 0

⎞

⎟

⎟

⎠

=

(

0 N
NT 0

)

where NT is the transpose of N . ∀ a, b ∈ Z∗
l the rank of Na,b is 2, the number

of zeroes of ψ is then:

|{(a1, · · · , a4) ∈ Z
4
l : ψ(a1, · · · , a4) = 0}| ≤ l3 + l2 − l ≤ 2l3.

Since the server does not know x1 or x2, he must guess suitable values for
v = (a1, a2, a3, a4). However, the probability that v is an isotropic vector (i.e.

t = 0) is negligible (l
3+l2−l

l4 ≤ 2
l). Then, if α2 �= e(A,B), the client outputs

⊥ with overwhelming probability, which concludes the fact that our protocol is
verifiable.

Remark 6. In our protocol, as in previous works, the client has to test mem-
bership in GT of some values returned by the server. However, the purpose of
such test is to ensure that the server does not return elements of (Fpk)∗ of small
orders. Indeed, as shown in the above security study, the adversary has to find
a pair (δ, δ(x1·x2)

−1

) to break the verifiability property. If the order of α2 is not
checked, then the adversary can choose an element of (Fpk)∗ of order 2, and
would then succeed with probability 1

2 , since it just has to guess the parity of
(x1 · x2)

−1.

4.2 Efficient Variant with One Exponentiation

As explained above, the efficiency of our protocol mainly depends on the com-
putational cost of the test of membership. If the curve parameters do not allow
the client to use the idea from [29], then the test of membership in GT will
require a costly exponentiation in (Fpk)∗, making the speed-up of the delega-
tion less obvious. Our aim in this section is to remove this test while ensuring
verifiability.

In a nutshell, we will make use of Remark 1 given in Section 2 so that the
fact that the order of α2 is implicitly l, without the necessity to verify such fact.
More precisely, the client will now compute χ̃ (instead of χ) such that χ = ρx1x2 .

As explained in Remark 1, χ̃c = χ, where c = pk−1
l . Then, the client and the

server proceed as in the protocol of Figure 2, except that the server now returns
α̃1 (where α̃c

1 = α1) and α2. Then, the client needs to check that

α2 = (α̃1 · χ̃−1)c·x1·x2.

Obviously, checking that α2 is equal to an element of (Fpk)∗, raised to the
power c, necessarily ensures that it belongs to GT (since this group contains all

560 S. Canard, J. Devigne, and O. Sanders

the elements of order l). As a conclusion, we no longer need to verify that α2

belongs to GT . It follows that no adversary is able to cheat unless to provide a
pair (δ, δ(x1·x2)

−1

) with δ of order l. The security of this variant is thus the same
as the one of the original protocol.

Regarding efficiency, our protocol now requires 1 scalar multiplication in G1,
1 scalar multiplication in G2 and only one exponentiation in (Fpk)∗. Since the
exponent involved in this last operation is close to the one (namely c) involved
in the last step of the Tate pairing, usually called the final exponentiation, we
may use a similar methodology as the one in [30]. It thus remains to compare
the computational cost of a Miller loop against 1 scalar multiplication in G1

and 1 scalar multiplication in G2. Using the timings from [28], we may conclude
that our protocol is still more efficient than computing the pairing. Again, an
estimated ratio is given in Table 1 for this variant.

4.3 Batch Delegation

In [31], the authors have considered the delegation of several pairings all at
once but they have only proposed protocols with one constant point to each
pairing. There are two reasons why batch delegation does not suit our proto-
col. First, with one constant point A, one may efficiently check the validity of
the requested e(A,B1),...,e(A,Bn) by using the bilinearity of the pairing since
e(A,B1+B2+...+Bn) = e(A,B1)·...·e(A,Bn). However this is not possible with
our protocol since we do not assume that one of the pairing’s input is constant.
More specifically, assuming that we want to delegate e(A1, B1), ..., e(An, Bn),
the computation of e(A1 + ... + An, B1 + ... + Bn) is useless because it also in-
volves several unknown values (the values e(Ai, Bj) for i �= j) that the client
will have to cancel, which leads to additional computations. Second, the goal of
batch delegation is to check validity of the n delegated pairings with less than
n equality tests. However, when two pairings αi = e(Ai, Bi) and αj = e(Aj , Bj)
are involved in the same equality test, they must be raised to different powers,
else, an adversary could return αi · δ and αj · δ−1, for some δ ∈ GT , and still
satisfy the test. It then seems hard to construct a protocol for delegating n pair-
ings with less than n exponentiations in GT which is roughly the cost of n runs
of our protocol (in the case of a cheap test of membership in GT).

5 Ensuring both Verifiability and Secrecy

We now consider the case where the points A and/or B are/is secret. We first
explain how to modify our previous protocols to achieve secrecy and then propose
an improved protocol which suits the case where B is a constant public point.

5.1 A Generic Conversion

There is an easy way to reach the secrecy property from the protocols described
in the previous section, using the ideas given in [20]. If A and B are secret,

Delegating a Pairing Can Be Both Secure and Efficient 561

one can simply compute A′ ← [u]A and B′ ← [v]B for randomly chosen u
and v in Zl. Then, the client and the server play one of the protocols given
in the previous section to get e(A′, B′). Finally, e(A,B) is obtained by simply

computing e(A′, B′)(uv)
−1

. The completeness and verifiability of this protocol
directly follow from the ones of the protocols given in the previous section.
The secrecy is then obvious since A′ and B′ are seen as random elements in
G1 and G2 respectively. This leads to a secure protocol requiring mainly two
exponentiations in GT and either one test of membership if we use the protocol
described in Section 4.1, or one exponentiation in GT and another one in (Fpk)∗

if we use the protocol described in Section 4.2. Since all of these exponentiations
require the knowledge of A and B, they have to be performed online.

5.2 A Protocol with Public Constant B

The case where A is a secret variable point and B is a constant public one can
be found in some cryptographic protocols such as the one of Hess [21]. It was
consider in [25] and [31]. But, on one hand, the solution provided in the former is
not enough secure (see Section 3.2), since the verifiability depends on the secrecy.
On the other hand, the solution of the latter requires two exponentiations in GT ,
one test of membership and additional computations in G1 and G2 during the
online phase.

We here assume that the client already knows � ← e(G1, B) (G1 is a parameter
and B is constant). We then provide a more efficient protocol, which is described
in Figure 3.

client (A,B,G1, �) server(B)

Init(params,A,B):

x, y, u
$← Zl

X ← [x]G1; Y ← [y]G1

(χ1, χ2) ← (�x, �y)
T1 ← A+X; T2 ← [u]A+ Y
Return (σ, τ) := ((T1, T2), (u))

σ−−−−−→
Compute(params,σ):

α1 ← e(T1, B)
α2 ← e(T2, B)
Return α := (α1, α2)

α←−−−−−
Extract(params,σ, τ, α):

If α2 = χ2 · (α1 · χ−1
1)u and α1 ∈ GT

Return μ := α1 · χ−1
1

Else, return ⊥

Fig. 3. Delegation protocol for secret A and public constant B

562 S. Canard, J. Devigne, and O. Sanders

Table 1. Efficiency and security comparison, where m1 (resp. m2) stands for a scalar
multiplication in G1 (resp. G2), eT stands for an exponentiation in GT , eF for an ex-
ponentiation in (Fpk)

∗, tT for a test of membership in GT and pT stands for a pairing.
We say that the verifiability is “conditional” when it depends on the secrecy (see sec-
tion 3.2). Provided ratios assume that the test of membership can be performed cheaply
[29]. The amount of storage required to store the pre-computed values is implicitly given
in the column “offline client”. Indeed, if an operation in a group is pre-computed, then
the result, which is an element of this group, must be stored.

Protocols with variable A and B

secrecy verifiability offline client online client server Ratios

[20] yes no - 1m1,1m2,1eT 1pT 0.46

[16,17] [Sect 4.1] yes yes 2m1,2m2,2eT 1m1,1m2,5eT ,3tT 4pT 1.46

[16,17] [Sect 5.2] no yes 1m1,1m2,1eT 1m1,1m2,3eT ,3tT 4pT 0.96

[25] yes conditional 1m1,1m2,1eT 1m1,1m2,3eT ,3tT 4pT 0.96

Ours [Sect 4.1] no yes 1m1,1m2, 1eT 1m1,1m2,1eT ,1tT 4pT 0.46

Ours [Sect 4.2] no yes 1m1,1m2, 1eT 1m1,1m2,1eF 4pT 0.84

Ours + [20][Sect 5.1] yes yes 1m1,1m2, 1eT 2m1,2m2,2eT ,1tT 4pT 0.92

Protocols with variable secret A and constant public B

secrecy verifiability offline client online client server Ratios

[25][Sect 4.3] yes conditional 1m1,1eT 1m1,1eT ,1tT 2pT 0.30

[31][SVPC] yes yes 1m1,1eT 2m1,2eT ,1tT 2pT 0.60

Ours [Sect 5.2] yes yes 2m1,2eT 1m1,1eT ,1tT 2pT 0.30

Computational Cost. Since χ1 and χ2 can be pre-computed, our protocol re-
quires one exponentiation in GT , one test of membership in GT and one scalar
multiplication in G1.

Security. The protocol is complete since e(A,B) = α1 · χ−1
1 and:

χ2 · (α1 · χ−1
1)u = e(Y,B) · (e(A+X,B) · e(X,B)−1)u

= e(Y,B) · e(A,B)u

= α2.

Delegating a Pairing Can Be Both Secure and Efficient 563

T1 and T2 are random elements of G1 and thus do not reveal any information
about A. As in the previous section, a pair (α′

1, α
′
2) will satisfy the equality test

if and only if α′
1 = α1 · δ and α′

2 = α2 · δu. Since u is only involved in the
computation of T2, an adversary, even knowing A, will not be able to find a
couple (δ, δu) ∈ G2

T unless to guess Y . Our protocol ensures then both secrecy
and verifiability with less computations than the one from [31], as we will see in
the next section.

6 Conclusion and Efficiency Comparison

In this paper, we have provided several delegation processes for a bilinear pairing.
We argue that our results are much more efficient than the state-of-the-art, for
a comparable or improved security. As evidence, we provide in Table 1 a global
comparison between our results and related works.

We use in this table the timings from [12,11] since this paper precisely de-
scribes the computational cost of operations in each group. Moreover, the authors
have implemented their algorithms so that ratios between their different bench-
mark results do not depend on the platforms. They therefore remain relevant
even considering an implementation on a smart card.

We emphasize that the efficiency of our protocols depends on the chosen
pairing and curve. We do not claim that our protocols are more efficient than
any implementation of pairing on any curve. However, there are some curves for
which the efficiency gain is significant. As evidence, we give in the last column
of Table 1 the estimated ratios between the online computational cost of our
protocols and the one of a pairing for the KSS-18 [24] family of curves.

Acknowledgments. This work was supported in part by the French ANR-12-
INSE-0014 SIMPATIC Project. We are also grateful to anonymous referees for
their valuable comments.

References

1. Paulo, S.L.M., Barreto, S.D., Galbraith, C.O.: hEigeartaigh, and Michael Scott.
Efficient pairing computation on supersingular abelian varieties. IACR Cryptology
ePrint Archive, 375 (2004)

2. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for
pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 354–368. Springer, Heidelberg (2002)

3. Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly groups.
In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 17–25.
Springer, Heidelberg (2004)

4. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

564 S. Canard, J. Devigne, and O. Sanders

5. David Bernhard, Georg Fuchsbauer, Essam Ghadafi, Nigel P. Smart, and Bogdan
Warinschi. Anonymous attestation with user-controlled linkability. IACR Cryptol-
ogy ePrint Archive, 658 (2011)

6. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via
group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN
2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010)

7. Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

10. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM
Conference on Computer and Communications Security 2004, pp. 168–177. ACM
(2004)

11. Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in pairing groups. In: Selected
Areas in Cryptography (2013) (to appear)

12. Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in pairing groups. IACR
Cryptology ePrint Archive, 458 (2013)

13. Canard, S., Coisel, I., Devigne, J., Gallais, C., Peters, T., Sanders, O.: Toward
Generic Method for Server-Aided Cryptography. In: Qing, S., Zhou, J., Liu, D.
(eds.) ICICS 2013. LNCS, vol. 8233, pp. 373–392. Springer, Heidelberg (2013)

14. Canard, S., Desmoulins, N., Devigne, J., Traoré, J.: On the implementation of
a pairing-based cryptographic protocol in a constrained device. In: Abdalla, M.,
Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 210–217. Springer, Heidelberg
(2013)

15. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

16. Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. IACR Cryptology ePrint Archive, 150 (2005)

17. Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny,
J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 24–35. Springer, Heidelberg (2010)

18. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptology 23(2), 224–280 (2010)

19. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008)

20. Girault, M., Lefranc, D.: Server-aided verification: Theory and practice. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 605–623. Springer, Heidelberg
(2005)

21. Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg,
K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg
(2003)

22. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Transac-
tions on Information Theory 52(10), 4595–4602 (2006)

23. Joux, A.: A one round protocol for tripartite diffie-hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

Delegating a Pairing Can Be Both Secure and Efficient 565

24. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing brezing-weng pairing-friendly
elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D., Paterson,
K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg (2008)

25. Kang, B.G., Lee, M.S., Park, J.H.: Efficient delegation of pairing computation.
IACR Cryptology ePrint Archive, 259 (2005)

26. Lim, C.H., Lee, P.J.: Server (Prover/Signer)-aided verification of identity proofs
and signatures. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995.
LNCS, vol. 921, pp. 64–78. Springer, Heidelberg (1995)

27. Matsumoto, T., Kato, K., Imai, H.: Speeding up secret computations with inse-
cure auxiliary devices. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403,
pp. 497–506. Springer, Heidelberg (1990)

28. Sánchez, A.H., Rodŕıguez-Henŕıquez, F.: NEON implementation of an attribute-
based encryption scheme. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 322–338. Springer, Heidelberg (2013)

29. Scott, M.: Unbalancing pairing-based key exchange protocols. Cryptology ePrint
Archive, Report 2013/688 (2013), http://eprint.iacr.org/

30. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.:
On the final exponentiation for calculating pairings on ordinary elliptic curves. In:
Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer,
Heidelberg (2009)

31. Tsang, P.P., Chow, S.S.M., Smith, S.W.: Batch pairing delegation. In: Miyaji, A.,
Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 74–90.
Springer, Heidelberg (2007)

32. Yao, A.C.-C.: Protocols for Secure Computations (extended abstract). In: FOCS,
pp. 160–164. IEEE Computer Society (1982)

http://eprint.iacr.org/

	Delegating a Pairing Can Be BothSecure and Efficient
	1 Introduction
	2 Preliminaries
	3 Security Model
	3.1 Syntax
	3.2 Security Notions

	4 Protocols with Public A and B
	4.1 A Protocol with Test of Membership
	4.2 Efficient Variant with One Exponentiation
	4.3 Batch Delegation

	5 Ensuring both Verifiability and Secrecy
	5.1 A Generic Conversion
	5.2 A Protocol with Public Constant B

	6 Conclusion and Efficiency Comparison
	References

