Skip to main content

Leukocytes in the Vaso-Occlusive Process

  • Chapter
  • First Online:
Sickle Cell Anemia

Abstract

Sickle cell disease (SCD) results from a single mutation in the β-globin gene, leading to clinical manifestations that extend far beyond the mutated hemoglobin in red blood cells (RBCs). SCD is associated with a chronic inflammatory condition that, in the presence of a “second hit”, can produce vaso-occlusive crises (VOC), the major cause of morbidity and mortality of the disease. Leukocytes play an important role in the vaso-occlusive phenomenon, as suggested initially by the findings of clinical studies that high leukocyte count strongly correlates with clinical severity of the disease. Further, intravital microscopy studies in SCD mice have revealed that sickle RBCs directly interact with adherent neutrophils in post-capillary and collecting venules. These heterotypic interactions are mediated by activated αMβ2 (Mac-1) integrin polarized on the leading edge of adherent neutrophils, resulting in severe VOC. A multistep and multicellular model for the vaso-occlusive process is proposed in which endothelial cells are activated by sickle RBCs and multiple inflammatory mediators, leading to the recruitment of adherent leukocytes. The recruited adherent neutrophils capture circulating sickle RBCs, resulting in reduced blood flow and vascular occlusion in the microcirculation. This model has triggered several clinical trials targeting drivers of vaso-occlusion, and suggests a major contribution of leukocytes to sickle cell VOC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abboud M, Laver J, Blau CA (1998) Granulocytosis causing sickle-cell crisis. Lancet 351(9107):959. doi:10.1016/S0140-6736(05)60614-9

    Article  CAS  PubMed  Google Scholar 

  • Adler BK, Salzman DE, Carabasi MH, Vaughan WP, Reddy VV, Prchal JT (2001) Fatal sickle cell crisis after granulocyte colony-stimulating factor administration. Blood 97(10):3313–3314

    Article  CAS  PubMed  Google Scholar 

  • Ahmed SG (2011) The role of infection in the pathogenesis of vaso-occlusive crisis in patients with sickle cell disease. Mediterr J Hematol Infect Dis 3(1):e2011028. doi:10.4084/MJHID.2011.028

    Article  PubMed  PubMed Central  Google Scholar 

  • Almeida CB, Scheiermann C, Jang JE, Prophete C, Costa FF, Conran N, Frenette PS (2012) Hydroxyurea and a cGMP-amplifying agent have immediate benefits on acute vaso-occlusive events in sickle cell disease mice. Blood 120(14):2879–2888. doi:10.1182/blood-2012-02-409524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anyaegbu CC, Okpala IE, Akren’Ova YA, Salimonu LS (1998) Peripheral blood neutrophil count and candidacidal activity correlate with the clinical severity of sickle cell anaemia (SCA). Eur J Haematol 60(4):267–268

    Article  CAS  PubMed  Google Scholar 

  • Barabino GA, Liu XD, Ewenstein BM, Kaul DK (1999) Anionic polysaccharides inhibit adhesion of sickle erythrocytes to the vascular endothelium and result in improved hemodynamic behavior. Blood 93(4):1422–1429

    CAS  PubMed  Google Scholar 

  • Belcher JD, Marker PH, Weber JP, Hebbel RP, Vercellotti GM (2000) Activated monocytes in sickle cell disease: potential role in the activation of vascular endothelium and vaso-occlusion. Blood 96(7):2451–2459

    CAS  PubMed  Google Scholar 

  • Belcher JD, Mahaseth H, Welch TE, Vilback AE, Sonbol KM, Kalambur VS, Bowlin PR, Bischof JC, Hebbel RP, Vercellotti GM (2005) Critical role of endothelial cell activation in hypoxia-induced vasoocclusion in transgenic sickle mice. Am J Physiol Heart Circ Physiol 288(6):H2715–H2725. doi:10.1152/ajpheart.00986.2004

    Article  CAS  PubMed  Google Scholar 

  • Belcher JD, Chen C, Nguyen J, Milbauer L, Abdulla F, Alayash AI, Smith A, Nath KA, Hebbel RP, Vercellotti GM (2014) Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123(3):377–390. doi:10.1182/blood-2013-04-495887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benkerrou M, Delarche C, Brahimi L, Fay M, Vilmer E, Elion J, Gougerot-Pocidalo MA, Elbim C (2002) Hydroxyurea corrects the dysregulated L-selectin expression and increased H(2)O(2) production of polymorphonuclear neutrophils from patients with sickle cell anemia. Blood 99(7):2297–2303

    Article  CAS  PubMed  Google Scholar 

  • Bridges KR, Barabino GD, Brugnara C, Cho MR, Christoph GW, Dover G, Ewenstein BM, Golan DE, Guttmann CR, Hofrichter J, Mulkern RV, Zhang B, Eaton WA (1996) A multiparameter analysis of sickle erythrocytes in patients undergoing hydroxyurea therapy. Blood 88(12):4701–4710

    CAS  PubMed  Google Scholar 

  • Canalli AA, Franco-Penteado CF, Saad ST, Conran N, Costa FF (2008) Increased adhesive properties of neutrophils in sickle cell disease may be reversed by pharmacological nitric oxide donation. Haematologica 93(4):605–609. doi:10.3324/haematol.12119

    Article  CAS  PubMed  Google Scholar 

  • Castro O, Brambilla DJ, Thorington B, Reindorf CA, Scott RB, Gillette P, Vera JC, Levy PS (1994) The acute chest syndrome in sickle cell disease: incidence and risk factors. The Cooperative Study of Sickle Cell Disease. Blood 84(2):643–649

    CAS  PubMed  Google Scholar 

  • Caudrillier A, Kessenbrock K, Gilliss BM, Nguyen JX, Marques MB, Monestier M, Toy P, Werb Z, Looney MR (2012) Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 122(7):2661–2671. doi:10.1172/JCI61303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang J, Shi PA, Chiang EY, Frenette PS (2008) Intravenous immunoglobulins reverse acute vaso-occlusive crises in sickle cell mice through rapid inhibition of neutrophil adhesion. Blood 111(2):915–923. doi:10.1182/blood-2007-04-084061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang J, Patton JT, Sarkar A, Ernst B, Magnani JL, Frenette PS (2010) GMI-1070, a novel pan-selectin antagonist, reverses acute vascular occlusions in sickle cell mice. Blood 116(10): 1779–1786. doi:10.1182/blood-2009-12-260513

    Article  PubMed  PubMed Central  Google Scholar 

  • Charache S (1997) Mechanism of action of hydroxyurea in the management of sickle cell anemia in adults. Semin Hematol 34(3 Suppl 3):15–21

    CAS  PubMed  Google Scholar 

  • Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV, McMahon RP, Bonds DR (1995) Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med 332(20):1317–1322. doi:10.1056/NEJM199505183322001

    Article  CAS  PubMed  Google Scholar 

  • Charache S, Barton FB, Moore RD, Terrin ML, Steinberg MH, Dover GJ, Ballas SK, McMahon RP, Castro O, Orringer EP (1996) Hydroxyurea and sickle cell anemia. Clinical utility of a myelosuppressive “switching” agent. The Multicenter Study of Hydroxyurea in Sickle Cell Anemia. Medicine 75(6):300–326

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS (2014) Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood 123(24):3818–3827. doi:10.1182/blood-2013-10-529982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang EY, Hidalgo A, Chang J, Frenette PS (2007) Imaging receptor microdomains on leukocyte subsets in live mice. Nat Methods 4(3):219–222, doi:nmeth1018 [pii]10.1038/nmeth1018

    Article  CAS  PubMed  Google Scholar 

  • Cokic VP, Smith RD, Beleslin-Cokic BB, Njoroge JM, Miller JL, Gladwin MT, Schechter AN (2003) Hydroxyurea induces fetal hemoglobin by the nitric oxide-dependent activation of soluble guanylyl cyclase. J Clin Invest 111(2):231–239. doi:10.1172/JCI16672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croizat H (1994) Circulating cytokines in sickle cell patients during steady state. Br J Haematol 87(3):592–597

    Article  CAS  PubMed  Google Scholar 

  • Dominical VM, Samsel L, Nichols JS, Costa FF, McCoy JP Jr, Conran N, Kato GJ (2014) Prominent role of platelets in the formation of circulating neutrophil-red cell heterocellular aggregates in sickle cell anemia. Haematologica 99(11):e214–e217. doi:10.3324/haematol.2014.108555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field JJ, Lin G, Okam MM, Majerus E, Keefer J, Onyekwere O, Ross A, Campigotto F, Neuberg D, Linden J, Nathan DG (2013) Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson. Blood 121(17):3329–3334. doi:10.1182/blood-2012-11-465963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis RB Jr, Haywood LJ (1992) Elevated immunoreactive tumor necrosis factor and interleukin-1 in sickle cell disease. J Natl Med Assoc 84(7):611–615

    PubMed  PubMed Central  Google Scholar 

  • Frelinger AL 3rd, Jakubowski JA, Brooks JK, Carmichael SL, Berny-Lang MA, Barnard MR, Heeney MM, Michelson AD (2014) Platelet activation and inhibition in sickle cell disease (pains) study. Platelets 25(1):27–35. doi:10.3109/09537104.2013.770136

    Article  CAS  PubMed  Google Scholar 

  • Frenette PS (2002) Sickle cell vaso-occlusion: multistep and multicellular paradigm. Curr Opin Hematol 9(2):101–106

    Article  PubMed  Google Scholar 

  • Ghosh S, Adisa OA, Chappa P, Tan F, Jackson KA, Archer DR, Ofori-Acquah SF (2013) Extracellular hemin crisis triggers acute chest syndrome in sickle mice. J Clin Invest 123(11):4809–4820. doi:10.1172/JCI64578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graido-Gonzalez E, Doherty JC, Bergreen EW, Organ G, Telfer M, McMillen MA (1998) Plasma endothelin-1, cytokine, and prostaglandin E2 levels in sickle cell disease and acute vaso-occlusive sickle crisis. Blood 92(7):2551–2555

    CAS  PubMed  Google Scholar 

  • Griffin TC, McIntire D, Buchanan GR (1994) High-dose intravenous methylprednisolone therapy for pain in children and adolescents with sickle cell disease. N Engl J Med 330(11):733–737. doi:10.1056/NEJM199403173301101

    Article  CAS  PubMed  Google Scholar 

  • Grigg AP (2001) Granulocyte colony-stimulating factor-induced sickle cell crisis and multiorgan dysfunction in a patient with compound heterozygous sickle cell/beta + thalassemia. Blood 97(12):3998–3999

    Article  CAS  PubMed  Google Scholar 

  • Hakansson L, Hoglund M, Jonsson UB, Torsteinsdottir I, Xu X, Venge P (1997) Effects of in vivo administration of G-CSF on neutrophil and eosinophil adhesion. Br J Haematol 98(3):603–611

    Article  CAS  PubMed  Google Scholar 

  • Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8(7):533–544. doi:10.1038/nri2356

    Article  CAS  PubMed  Google Scholar 

  • Hankins JS, Ware RE, Rogers ZR, Wynn LW, Lane PA, Scott JP, Wang WC (2005) Long-term hydroxyurea therapy for infants with sickle cell anemia: the HUSOFT extension study. Blood 106(7):2269–2275. doi:10.1182/Blood-2004-12-4973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebbel RP, Eaton JW, Balasingam M, Steinberg MH (1982) Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest 70(6):1253–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidalgo A, Peired AJ, Wild MK, Vestweber D, Frenette PS (2007) Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44. Immunity 26(4):477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidalgo A, Chang J, Jang JE, Peired AJ, Chiang EY, Frenette PS (2009) Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nat Med 15(4):384–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofstra TC, Kalra VK, Meiselman HJ, Coates TD (1996) Sickle erythrocytes adhere to polymorphonuclear neutrophils and activate the neutrophil respiratory burst. Blood 87(10):4440–4447

    CAS  PubMed  Google Scholar 

  • Jang JE, Hod EA, Spitalnik SL, Frenette PS (2011) CXCL1 and its receptor, CXCR2, mediate murine sickle cell vaso-occlusion during hemolytic transfusion reactions. J Clin Invest 121(4):1397–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang JE, Hidalgo A, Frenette PS (2012) Intravenous immunoglobulins modulate neutrophil activation and vascular injury through FcgammaRIII and SHP-1. Circ Res 110(8):1057–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul DK, Hebbel RP (2000) Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice. J Clin Invest 106(3):411–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul DK, Fabry ME, Nagel RL (1989) Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: pathophysiological implications. Proc Natl Acad Sci U S A 86(9):3356–3360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul DK, Liu XD, Choong S, Belcher JD, Vercellotti GM, Hebbel RP (2004) Anti-inflammatory therapy ameliorates leukocyte adhesion and microvascular flow abnormalities in transgenic sickle mice. Am J Physiol Heart Circ Physiol 287(1):H293–H301

    Article  CAS  PubMed  Google Scholar 

  • Kaul DK, Finnegan E, Barabino GA (2009) Sickle red cell-endothelium interactions. Microcirculation 16(1):97–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Khajah M, Millen B, Cara DC, Waterhouse C, McCafferty DM (2011) Granulocyte-macrophage colony-stimulating factor (GM-CSF): a chemoattractive agent for murine leukocytes in vivo. J Leukoc Biol 89(6):945–953

    Article  CAS  PubMed  Google Scholar 

  • Kinney TR, Sleeper LA, Wang WC, Zimmerman RA, Pegelow CH, Ohene-Frempong K, Wethers DL, Bello JA, Vichinsky EP, Moser FG, Gallagher DM, DeBaun MR, Platt OS, Miller ST (1999) Silent cerebral infarcts in sickle cell anemia: a risk factor analysis. The Cooperative Study of Sickle Cell Disease. Pediatrics 103(3):640–645

    Article  CAS  PubMed  Google Scholar 

  • Kutlar A, Ataga KI, McMahon L, Howard J, Galacteros F, Hagar W, Vichinsky E, Cheung AT, Matsui N, Embury SH (2012) A potent oral P-selectin blocking agent improves microcirculatory blood flow and a marker of endothelial cell injury in patients with sickle cell disease. Am J Hematol 87(5):536–539

    Article  CAS  PubMed  Google Scholar 

  • Lard LR, Mul FP, de Haas M, Roos D, Duits AJ (1999) Neutrophil activation in sickle cell disease. J Leukoc Biol 66(3):411–415

    CAS  PubMed  Google Scholar 

  • Letvin NL, Linch DC, Beardsley GP, McIntyre KW, Nathan DG (1984) Augmentation of fetal-hemoglobin production in anemic monkeys by hydroxyurea. N Engl J Med 310(14): 869–873

    Article  CAS  PubMed  Google Scholar 

  • Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7(9):678–689

    Article  CAS  PubMed  Google Scholar 

  • Lin G, Field JJ, Yu JC, Ken R, Neuberg D, Nathan DG, Linden J (2013) NF-kappaB is activated in CD4+ iNKT cells by sickle cell disease and mediates rapid induction of adenosine A2A receptors. PLoS One 8(10):e74664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo SK, Lee S, Ramos RA, Lobb R, Rosa M, Chi-Rosso G, Wright SD (1991) Endothelial-leukocyte adhesion molecule 1 stimulates the adhesive activity of leukocyte integrin CR3 (CD11b/CD18, Mac-1, alpha m beta 2) on human neutrophils. J Exp Med 173(6):1493–1500

    Article  CAS  PubMed  Google Scholar 

  • Malave I, Perdomo Y, Escalona E, Rodriguez E, Anchustegui M, Malave H, Arends T (1993) Levels of tumor necrosis factor alpha/cachectin (TNF alpha) in sera from patients with sickle cell disease. Acta Haematol 90(4):172–176

    Article  CAS  PubMed  Google Scholar 

  • Manwani D, Frenette PS (2013) Vaso-occlusion in sickle cell disease: pathophysiology and novel targeted therapies. Blood 122(24):3892–3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller ST, Sleeper LA, Pegelow CH, Enos LE, Wang WC, Weiner SJ, Wethers DL, Smith J, Kinney TR (2000) Prediction of adverse outcomes in children with sickle cell disease. N Engl J Med 342(2):83–89

    Article  CAS  PubMed  Google Scholar 

  • Nathan DG, Field J, Lin G, Neuberg D, Majerus E, Onyekwere O, Keefer J, Okam M, Ross A, Linden J (2012) Sickle cell disease (SCD), iNKT cells, and regadenoson infusion. Trans Am Clin Climatol Assoc 123:312–317

    PubMed  PubMed Central  Google Scholar 

  • Nelson RM, Cecconi O, Roberts WG, Aruffo A, Linhardt RJ, Bevilacqua MP (1993) Heparin oligosaccharides bind L- and P-selectin and inhibit acute inflammation. Blood 82(11): 3253–3258

    CAS  PubMed  Google Scholar 

  • Paszty C, Brion CM, Manci E, Witkowska HE, Stevens ME, Mohandas N, Rubin EM (1997) Transgenic knockout mice with exclusively human sickle hemoglobin and sickle cell disease. Science 278(5339):876–878

    Article  CAS  PubMed  Google Scholar 

  • Perelman N, Selvaraj SK, Batra S, Luck LR, Erdreich-Epstein A, Coates TD, Kalra VK, Malik P (2003) Placenta growth factor activates monocytes and correlates with sickle cell disease severity. Blood 102(4):1506–1514

    Article  CAS  PubMed  Google Scholar 

  • Peter K, Schwarz M, Conradt C, Nordt T, Moser M, Kubler W, Bode C (1999) Heparin inhibits ligand binding to the leukocyte integrin Mac-1 (CD11b/CD18). Circulation 100(14):1533–1539

    Article  CAS  PubMed  Google Scholar 

  • Pieters RC, Rojer RA, Saleh AW, Saleh AE, Duits AJ (1995) Molgramostim to treat SS-sickle cell leg ulcers. Lancet 345(8948):528

    Article  CAS  PubMed  Google Scholar 

  • Platt OS, Thorington BD, Brambilla DJ, Milner PF, Rosse WF, Vichinsky E, Kinney TR (1991) Pain in sickle cell disease. Rates and risk factors. N Engl J Med 325(1):11–16

    Article  CAS  PubMed  Google Scholar 

  • Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, Klug PP (1994) Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med 330(23):1639–1644

    Article  CAS  PubMed  Google Scholar 

  • Qari MH, Aljaouni SK, Alardawi MS, Fatani H, Alsayes FM, Zografos P, Alsaigh M, Alalfi A, Alamin M, Gadi A, Mousa SA (2007) Reduction of painful vaso-occlusive crisis of sickle cell anaemia by tinzaparin in a double-blind randomized trial. Thromb Haemost 98(2):392–396

    CAS  PubMed  Google Scholar 

  • Safaya S, Steinberg MH, Klings ES (2012) Monocytes from sickle cell disease patients induce differential pulmonary endothelial gene expression via activation of NF-kappaB signaling pathway. Mol Immunol 50(1–2):117–123

    Article  CAS  PubMed  Google Scholar 

  • Saleh AW, Hillen HF, Duits AJ (1999) Levels of endothelial, neutrophil and platelet-specific factors in sickle cell anemia patients during hydroxyurea therapy. Acta Haematol 102(1):31–37

    Article  CAS  PubMed  Google Scholar 

  • Schaer DJ, Buehler PW, Alayash AI, Belcher JD, Vercellotti GM (2013) Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 121(8):1276–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setty BN, Kulkarni S, Stuart MJ (2002) Role of erythrocyte phosphatidylserine in sickle red cell-endothelial adhesion. Blood 99(5):1564–1571

    Article  CAS  PubMed  Google Scholar 

  • Simon SI, Hu Y, Vestweber D, Smith CW (2000) Neutrophil tethering on E-selectin activates beta 2 integrin binding to ICAM-1 through a mitogen-activated protein kinase signal transduction pathway. J Immunol 164(8):4348–4358

    Article  CAS  PubMed  Google Scholar 

  • Solovey A, Lin Y, Browne P, Choong S, Wayner E, Hebbel RP (1997) Circulating activated endothelial cells in sickle cell anemia. N Engl J Med 337(22):1584–1590

    Article  CAS  PubMed  Google Scholar 

  • Solovey AA, Solovey AN, Harkness J, Hebbel RP (2001) Modulation of endothelial cell activation in sickle cell disease: a pilot study. Blood 97(7):1937–1941

    Article  CAS  PubMed  Google Scholar 

  • Steinberg MH, Barton F, Castro O et al (2003) Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA 289(13): 1645–1651

    Article  CAS  PubMed  Google Scholar 

  • Sultana C, Shen Y, Rattan V, Johnson C, Kalra VK (1998) Interaction of sickle erythrocytes with endothelial cells in the presence of endothelial cell conditioned medium induces oxidant stress leading to transendothelial migration of monocytes. Blood 92(10):3924–3935

    CAS  PubMed  Google Scholar 

  • Telen MJ, Wun T, McCavit TL et al (2015) Randomized phase 2 study of GMI-1070 in SCD: reduction in time to resolution of vaso-occlusive events and decreased opioid use. Blood. doi:10.1182/blood-2014-06-583351

    PubMed  PubMed Central  Google Scholar 

  • Thomas PW, Higgs DR, Serjeant GR (1997) Benign clinical course in homozygous sickle cell disease: a search for predictors. J Clin Epidemiol 50(2):121–126

    Article  CAS  PubMed  Google Scholar 

  • Turhan A, Weiss LA, Mohandas N, Coller BS, Frenette PS (2002) Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc Natl Acad Sci U S A 99(5):3047–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turhan A, Jenab P, Bruhns P, Ravetch JV, Coller BS, Frenette PS (2004) Intravenous immune globulin prevents venular vaso-occlusion in sickle cell mice by inhibiting leukocyte adhesion and the interactions between sickle erythrocytes and adherent leukocytes. Blood 103(6):2397–2400

    Article  CAS  PubMed  Google Scholar 

  • Wagener FA, Eggert A, Boerman OC, Oyen WJ, Verhofstad A, Abraham NG, Adema G, van Kooyk Y, de Witte T, Figdor CG (2001) Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood 98(6):1802–1811

    Article  CAS  PubMed  Google Scholar 

  • Wali Y, Beshlawi I, Fawaz N, Alkhayat A, Zalabany M, Elshinawy M, Al-Kindi S, Al-Rawas AH, Klein C (2012) Coexistence of sickle cell disease and severe congenital neutropenia: first impressions can be deceiving. Eur J Haematol 89(3):245–249

    Article  PubMed  Google Scholar 

  • Wallace KL, Linden J (2010) Adenosine A2A receptors induced on iNKT and NK cells reduce pulmonary inflammation and injury in mice with sickle cell disease. Blood 116(23):5010–5020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace KL, Marshall MA, Ramos SI, Lannigan JA, Field JJ, Strieter RM, Linden J (2009) NKT cells mediate pulmonary inflammation and dysfunction in murine sickle cell disease through production of IFN-gamma and CXCR3 chemokines. Blood 114(3):667–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RH, Phillips G Jr, Medof ME, Mold C (1993) Activation of the alternative complement pathway by exposure of phosphatidylethanolamine and phosphatidylserine on erythrocytes from sickle cell disease patients. J Clin Invest 92(3):1326–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wun T, Styles L, DeCastro L, Telen MJ, Kuypers F, Cheung A, Kramer W, Flanner H, Rhee S, Magnani JL, Thackray H (2014) Phase 1 study of the E-selectin inhibitor GMI 1070 in patients with sickle cell anemia. PLoS One 9(7):e101301

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie X, Thorlacius H, Raud J, Hedqvist P, Lindbom L (1997) Inhibitory effect of locally administered heparin on leukocyte rolling and chemoattractant-induced firm adhesion in rat mesenteric venules in vivo. Br J Pharmacol 122(5):906–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarbock A, Lowell CA, Ley K (2007a) Spleen tyrosine kinase Syk is necessary for E-selectin-induced alpha(L)beta(2) integrin-mediated rolling on intercellular adhesion molecule-1. Immunity 26(6):773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarbock A, Polanowska-Grabowska RK, Ley K (2007b) Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev 21(2):99–111

    Article  CAS  PubMed  Google Scholar 

  • Zennadi R, De Castro L, Eyler C, Xu K, Ko M, Telen MJ (2008) Role and regulation of sickle red cell interactions with other cells: ICAM-4 and other adhesion receptors. Transfus Clin Biol 15(1–2):23–28

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Frenette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, D., Frenette, P.S. (2016). Leukocytes in the Vaso-Occlusive Process. In: Costa, F., Conran, N. (eds) Sickle Cell Anemia. Springer, Cham. https://doi.org/10.1007/978-3-319-06713-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06713-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06712-4

  • Online ISBN: 978-3-319-06713-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics