Skip to main content

In silico Maturation: Processing Sequences to Improve Biopolymer Functions Based on Genetic Algorithms

  • Chapter
  • First Online:
Applications of Metaheuristics in Process Engineering

Abstract

Peptide ligands and oligonucleotide aptamers are promising agents in therapeutic and diagnostic applications. Conventional technologies to develop these biopolymers depend on screening of functional sequences from a combinatorial library. Because the relationship between a biopolymer sequence and its function is a complex and multidimensional problem, identification of sequences for a desired function cannot be readily accomplished only by rational approaches. To solve such problems, genetic algorithms (GAs) represent an intelligent strategy to perform random search in a defined sequence space. This methodology permits progressive exploration of the sequence space and evolving biopolymer functions. In this chapter, we present an overview of GA-based approaches to develop functional peptide ligands and oligonucleotide aptamers. We review recent trends in GA-based optimization of biopolymer sequences to improve targeted functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, K., Kobayashi, N., Sode, K., Ikebukuro, K.: Peptide ligand screening of alpha-synuclein aggregation modulators by in silico panning. BMC Bioinforma. 8, 451 (2007)

    Article  Google Scholar 

  2. Asai, R., Nishimura, S.I., Aita, T., Takahashi, K.: In vitro selection of DNA aptamers on chips using a method for generating point mutations. Anal. Lett. 37, 645–656 (2005)

    Article  Google Scholar 

  3. Belda, I., Madurga, S., Llorà, X., Martinell, M., Tarragó, T., Piqueras, M.G., Nicolás, E., Giralt, E.: ENPDA: an evolutionary structure-based de novo peptide design algorithm. J. Comput. Aided Mol. Des. 19, 585–601 (2005)

    Article  Google Scholar 

  4. Bishop, G.R., Ren, J., Polander, B.C., Jeanfreau, B.D., Trent, J.O., Chaires, J.B.: Energetic basis of molecular recognition in a DNA aptamer. Biophys. Chem. 126, 165–175 (2007)

    Article  Google Scholar 

  5. Bittker, J.A., Le, B.V., Liu, D.R.: Nucleic acid evolution and minimization by nonhomologous random recombination. Nat. Biotechnol. 20, 1024–1029 (2002)

    Article  Google Scholar 

  6. Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H., Toole, J.J.: Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566 (1992)

    Article  Google Scholar 

  7. Boese, B.J., Breaker, R.R.: In vitro selection and characterization of cellulose-binding DNA aptamers. Nucleic Acids Res. 35, 6378–6388 (2007)

    Article  Google Scholar 

  8. Brown, R.D., Martin, Y.C.: Designing combinatorial library mixtures using a genetic algorithm. J. Med. Chem. 40, 2304–2313 (1997)

    Article  Google Scholar 

  9. Chushak, Y., Stone, M.O.: In silico selection of RNA aptamers. Nucleic Acids Res. 37, e87 (2009)

    Article  Google Scholar 

  10. Crameri, A., Stemmer, W.P.: 10(20)-fold aptamer library amplification without gel purification. Nucleic Acids Res. 21, 4410 (1993)

    Article  Google Scholar 

  11. Ellington, A.D., Szostak, J.W.: In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990)

    Article  Google Scholar 

  12. Ewing, T.J., Makino, S., Skillman, A.G., Kuntz, I.D.: DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 15, 411–428 (2001)

    Google Scholar 

  13. FitzGerald, K.: In vitro display technologies - new tools for drug discovery. Drug Discov. Today 5, 253–258 (2000)

    Article  Google Scholar 

  14. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  15. Holland, J.H.: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  16. Huey, R., Morris, G.M., Olson, A.J., Goodsell, D.S.: A semiempirical free energy force field with charge-based desolvation. J Comput. Chem. 28, 1145–1152 (2007)

    Article  Google Scholar 

  17. Ikebukuro, K., Okumura, Y., Sumikura, K., Karube, I.: A novel method of screening thrombin-inhibiting DNA aptamers using an evolution-mimicking algorithm. Nucleic Acids Res. 33, e108 (2005)

    Article  Google Scholar 

  18. Ikebukuro, K., Yoshida, W., Noma, T., Sode, K.: Analysis of the evolution of the thrombin-inhibiting DNA aptamers using a genetic algorithm. Biotechnol. Lett. 28, 1933–1937 (2006)

    Article  Google Scholar 

  19. Kanagawa, T.: Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng. 96, 317–323 (2003)

    Google Scholar 

  20. Katilius, E., Flores, C., Woodbury, N.W.: Exploring the sequence space of a DNA aptamer using microarrays. Nucleic Acids Res. 35, 7626–7635 (2007)

    Article  Google Scholar 

  21. Klug, S.J., Famulok, M.: All you wanted to know about SELEX. Mol. Biol. Rep. 20, 97–107 (1994)

    Article  Google Scholar 

  22. Knight, C.G., Platt, M., Rowe, W., Wedge, D.C., Khan, F., Day, P.J., McShea, A., Knowles, J., Kell, D.B.: Array-based evolution of DNA aptamers allows modelling of an explicit sequence-fitness landscape. Nucleic Acids Res. 37:e6 (2009)

    Article  Google Scholar 

  23. Laing, C., Schlick, T.: Computational approaches to RNA structure prediction, analysis, and design. Curr. Opin. Struct. Biol. 21, 306–318 (2011)

    Article  Google Scholar 

  24. Lin, P.H., Tsai, C.W., Wu, J.W., Ruaan, R.C., Chen, W.Y.: Molecular dynamics simulation of the induced-fit binding process of DNA aptamer and L-argininamide. Biotechnol. J. 7, 1367–1375 (2012)

    Article  Google Scholar 

  25. Macaya, R.F., Waldron, J.A., Beutel, B.A., Gao, H., Joesten, M.E., Yang, M., Patel, R., Bertelsen, A.H., Cook, A.F.: Structural and functional characterization of potent antithrombotic oligonucleotides possessing both quadruplex and duplex motifs. Biochemistry 34, 4478–4492 (1995)

    Article  Google Scholar 

  26. Noma, T., Sode, K., Ikebukuro, K.: Characterization and application of aptamers for Taq DNA polymerase selected using an evolution-mimicking algorithm. Biotechnol. Lett. 28, 1939–1944 (2006)

    Article  Google Scholar 

  27. Noma, T., Ikebukuro, K.: Aptamer selection based on inhibitory activity using an evolution-mimicking algorithm. Biochem. Biophys. Res. Commun. 347, 226–231 (2006)

    Article  Google Scholar 

  28. Nonaka, Y., Sode, K., Ikebukuro, K.: Screening and improvement of an anti-VEGF DNA aptamer. Molecules 15, 215–225 (2010)

    Article  Google Scholar 

  29. Nonaka, Y., Yoshida, W., Abe, K., Ferri, S., Schulze, H., Bachmann, T.T., Ikebukuro, K.: Affinity improvement of a VEGF aptamer by in silico maturation for a sensitive VEGF-detection system. Anal. Chem. 85, 1132–1137 (2013)

    Article  Google Scholar 

  30. Pfeffer, P., Fober, T., Hullermeier, E., Klebe, G.: GARLig: a fully automated tool for subset selection of large fragment spaces via a self-adaptive genetic algorithm. J. Chem. Inf. Model 50, 1644–1659 (2010)

    Article  Google Scholar 

  31. Pitt, J.N., Ferre-D′Amaré, A.R.: Rapid construction of empirical RNA fitness landscapes. Science 330, 376–379 (2010)

    Article  Google Scholar 

  32. Platt, M., Rowe, W., Wedge, D.C., Kell, D.B., Knowles, J., Day, P.J.: Aptamer evolution for array-based diagnostics. Anal. Biochem. 390, 203–205 (2009)

    Article  Google Scholar 

  33. Rockendorf, N., Borschbach, M., Frey, A.: Molecular evolution of peptide ligands with custom-tailored characteristics for targeting of glycostructures. PLoS Comput. Biol. 8, e1002800 (2012)

    Article  Google Scholar 

  34. Rowe, W., Platt, M., Wedge, D.C., Day, P.J., Kell, D.B., Knowles, J.D.: Convergent evolution to an aptamer observed in small populations on DNA microarrays. Phys. Biol. 7, 036007 (2010)

    Article  Google Scholar 

  35. Rowe, W., Platt, M., Wedge, D.C., Day, P.J., Kell, D.B., Knowles, J.: Analysis of a complete DNA-protein affinity landscape. J. R. Soc. Interface 7, 397–408 (2010)

    Article  Google Scholar 

  36. Savory, N., Abe, K., Sode, K., Ikebukuro, K.: Selection of DNA aptamer against prostate specific antigen using a genetic algorithm and application to sensing. Biosens. Bioelectron. 26, 1386–1391 (2010)

    Article  Google Scholar 

  37. Savory, N., Lednor, D., Tsukakoshi, K., Abe, K., Yoshida, W., Ferri, S., Jones, B.V., Ikebukuro, K.: In silico Maturation of Binding-Specificity of DNA Aptamers Against Proteus mirabilis. Biotechnol. Bioeng. 110, 2573–2580 (2013)

    Google Scholar 

  38. Savory, N., Takahashi, Y., Tsukakoshi, K., Hasegawa, H., Takase, M., Abe, K., Yoshida, W., Ferri, S., Kumazawa, S., Sode, K., Ikebukuro, K.: Simultaneous improvement of specificity and affinity of aptamers against Streptococcus mutans by in silico maturation for biosensor development. Biotechnol. Bioeng. Epub ahead of print. doi:10.1002/bit.25111 (2013)

    Google Scholar 

  39. Scott, J.K., Smith, G.P.: Searching for peptide ligands with an epitope library. Science 249, 386–390 (1990)

    Article  Google Scholar 

  40. Singh, J., Ator, M.A., Jaeger, E.P., Allen, M.P., Whipple, D.A., Soloweij, J.E., Chowdhary, S., Treasurywala, A.M.: Application of genetic algorithms to combinatorial synthesis: A computational approach to lead identification and lead optimization. J. Am. Chem. Soc. 118, 1669–1676 (1996)

    Article  Google Scholar 

  41. Smirnov, I., Shafer, R.H.: Effect of loop sequence and size on DNA aptamer stability. Biochemistry 39, 1462–1468 (2000)

    Article  Google Scholar 

  42. Teixidó, M., Belda, I., Roselló, X., González, S., Fabre, M., Llorà, X., Bacardit, J., Garrell, J.M., Vilaró, S., Albericio, F., Giralt, E.: Development of a genetic algorithm to design and identify peptides that can cross the blood-brain barrier. QSAR Comb. Sci. 22, 745–753 (2003)

    Article  Google Scholar 

  43. Teixidó, M., Belda, I., Zurita, E., Llorà, X., Fabre, M., Vilaró, S., Albericio, F., Giralt, E.: Evolutionary combinatorial chemistry, a novel tool for SAR studies on peptide transport across the blood-brain barrier. Part 2. Design, synthesis and evaluation of a first generation of peptides. J. Pept. Sci. 11, 789–804 (2005)

    Google Scholar 

  44. Tuerk, C., Gold, L.: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990)

    Article  Google Scholar 

  45. Verdonk, M.L., Cole, J.C., Hartshorn, M.J., Murray, C.W., Taylor, R.D.: Improved protein-ligand docking using GOLD. Proteins 52, 609–623 (2003)

    Article  Google Scholar 

  46. Weber, L., Wallbaum, S., Broger, C., Gubernator, K.: Optimization of the biological-activity of combinatorial compound libraries by a genetic algorithm. Angew. Chem. Int. Ed. Engl. 34, 2280–2282 (1995)

    Article  Google Scholar 

  47. Yagi, Y., Terada, K., Noma, T., Ikebukuro, K., Sode, K.: In silico panning for a non-competitive peptide inhibitor. BMC Bioinforma. 8, 11 (2007)

    Article  Google Scholar 

  48. Yokobayashi, Y., Ikebukuro, K., McNiven, S., Karube, I.: Directed evolution of trypsin inhibiting peptides using a genetic algorithm. J. Chem. Soc. Perkin Trans. 1, 2435–2437 (1996)

    Article  Google Scholar 

  49. Zhang, W., Loughran, M.G., Kanna, S., Yano, K., Ikebukuro, K., Yokobayashi, Y., Kuroda, R., Karube, I.: Exploration of structural features of monomeric helical peptides designed with a genetic algorithm. Proteins 53, 193–200 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Industrial Technology Research Grant Program 2009 of the New Energy and Industrial Technology Development Organization of Japan (NEDO) and a grant from the Low-Carbon Research Network Japan (LCnet). N.S. was supported by Research Fellowships for Young Scientists DC1 from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Ikebukuro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Savory, N., Abe, K., Yoshida, W., Ikebukuro, K. (2014). In silico Maturation: Processing Sequences to Improve Biopolymer Functions Based on Genetic Algorithms. In: Valadi, J., Siarry, P. (eds) Applications of Metaheuristics in Process Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-06508-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06508-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06507-6

  • Online ISBN: 978-3-319-06508-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics