Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 320 Accesses

Abstract

The fourth fundamental state of matter is plasma (the other states are solid, liquid, and gas). Sir William Crookes, an English physicist, first described what we know today as plasma in 1879.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langmuir I (1929) The interaction of electron and positive ion space charges in cathode sheaths. Phys Rev 33:0954–0989

    Article  ADS  Google Scholar 

  2. Isbary G, Heinlin J, Shimizu T, Zimmermann JL, Morfill G et al (2012) Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol 67(2):404–410

    Google Scholar 

  3. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN et al (2008) Applied plasma medicine. Plasma Processes Polym 5:503–533

    Article  Google Scholar 

  4. Dobrynin D, Fridman G, Friedman G, Fridman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11:115020

    Google Scholar 

  5. Joshi SG, Cooper M, Yost A, Paff M, Ercan UK et al (2011) Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob Agents Chemother 55:1053–1062

    Article  Google Scholar 

  6. Fridman G, Peddinghaus M, Ayan H, Fridman A, Balasubramanian M et al (2006) Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process 26:425–442

    Article  Google Scholar 

  7. Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A et al (2007) Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem Plasma Process 27:163–176

    Article  Google Scholar 

  8. Stoffels E, Flikweert AJ, Stoffels WW, Kroesen GMW (2002) Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials. Plasma Sources Sci Technol 11:383–388

    Article  ADS  Google Scholar 

  9. Goree J, Liu B, Drake D, Stoffels E (2006) Killing of S-mutans bacteria using a plasma needle at atmospheric pressure. IEEE Trans Plasma Sci 34:1317–1324

    Article  ADS  Google Scholar 

  10. Walsh JL, Shi JJ, Kong MG (2006) Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets. Appl Phys Lett 88:171501

    Google Scholar 

  11. Laroussi M, Lu X (2005) Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl Phys Lett 87:113902

    Google Scholar 

  12. Laroussi M, Hynes W, Akan T, Lu XP, Tendero C (2008) The plasma pencil: a source of hypersonic cold plasma bullets for biomedical applications. IEEE Trans Plasma Sci 36:1298–1299

    Article  ADS  Google Scholar 

  13. Shimizu T, Steffes B, Pompl R, Jamitzky F, Bunk W et al (2008) Characterization of microwave plasma torch for decontamination. Plasma Processes Polym 5:577–582

    Article  Google Scholar 

  14. Morfill GE, Shimizu T, Steffes B, Schmidt HU (2009) Nosocomial infections-a new approach towards preventive medicine using plasmas. New J Phys 11:115019

    Google Scholar 

  15. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46

    Article  Google Scholar 

  16. Sakiyama Y, Graves DB, Chang HW, Shimizu T, Morfill GE (2012) Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. J Phys D-Appl Phys 45(11):115203

    Google Scholar 

  17. Shimizu T, Sakiyama Y, Graves DB, Zimmermann JL, Morfill GE (2012) The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure. New J Phys 14:103028

    Google Scholar 

  18. Pavlovich MJ, Chang HW, Sakiyama Y, Clark DS, Graves DB (2013) Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water. J Phys D-Appl Phys 46(14):145202

    Google Scholar 

  19. Maisch T, Shimizu T, Isbary G, Heinlin J, Karrer S et al (2012) Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma. Appl Environ Microbiol 78:4242–4247

    Article  Google Scholar 

  20. Zimmermann JL, Dumler K, Shimizu T, Morfill GE, Wolf A et al (2011) Effects of cold atmospheric plasmas on adenoviruses in solution. J Phys D-Appl Phys 44:505201

    Google Scholar 

  21. Hahnel M, von Woedtke T, Weltmann KD (2010) Influence of the air humidity on the reduction of Bacillus Spores in a defined environment at atmospheric pressure using a dielectric barrier surface discharge. Plasma Processes Polym 7:244–249

    Article  Google Scholar 

  22. Klampfl TG, Isbary G, Shimizu T, Li YF, Zimmermann JL et al (2012) Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol 78(15):5077–5082

    Google Scholar 

  23. Maisch T, Shimizu T, Li YF, Heinlin J, Karrer S et al (2012) Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS ONE 7:e34610

    Article  ADS  Google Scholar 

  24. Lademann O, Kramer A, Richter H, Patzelt A, Meinke MC et al (2011) Skin disinfection by plasma-tissue interaction: comparison of the effectivity of tissue-tolerable plasma and a standard antiseptic. Skin Pharmacol Physiol 24:284–288

    Article  Google Scholar 

  25. Isbary G, Morfill G, Schmidt HU, Georgi M, Ramrath K et al (2010) A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol 163:78–82

    Google Scholar 

  26. Lupu AR, Georgescu N, Calugaru A, Cremer L, Szegli G et al (2009) The effects of cold atmospheric plasma jets on B16 and COLO320 tumoral cells. Roum Arch Microbiol Immunol 68:136–144

    Google Scholar 

  27. Kim G-CLHJ, Shon C-H (2009) The effects of micro plasma on Melanoma (G361) cancer cells. J Korean Phys Soc 54:625–632

    Google Scholar 

  28. Kim CH, Bahn JH, Lee SH, Kim GY, Jun SI et al (2010) Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. J Biotechnol 150:530–538

    Article  Google Scholar 

  29. Lupu AR, Georgescu N (2010) Cold atmospheric plasma jet effects on V79-4 cells. Roum Arch Microbiol Immunol 69:67–74

    Google Scholar 

  30. Kim CH, Kwon S, Bahn JH, Lee K, Jun SI et al (2010) Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells. Appl Phys Lett 96:243701

    Article  ADS  Google Scholar 

  31. Vandamme M, Robert E, Lerondel S, Sarron V, Ries D et al (2011) ROS implication in a new antitumor strategy based on non-thermal plasma. Int J Cancer 105(9):1295–1301

    Google Scholar 

  32. Volotskova O, Hawley TS, Stepp MA, Keidar M (2012) Targeting the cancer cell cycle by cold atmospheric plasma. Sci Rep 2:636

    Article  ADS  Google Scholar 

  33. Kim JY, Ballato J, Foy P, Hawkins T, Wei Y et al (2011) Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma. Biosens Bioelectron 28:333–338

    Article  Google Scholar 

  34. Vandamme M, Robert E, Lerondel S, Sarron V, Ries D et al (2012) ROS implication in a new antitumor strategy based on non-thermal plasma. Int J Cancer 130:2185–2194

    Article  Google Scholar 

  35. Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A et al (2011) Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer 105:1295–1301

    Article  Google Scholar 

  36. Ahn HJ, Kim KI, Kim G, Moon E, Yang SS et al (2011) Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals. PLoS ONE 6:e28154

    Article  ADS  Google Scholar 

  37. Thiyagarajan M, Waldbeser L, Whitmill A (2012) THP-1 leukemia cancer treatment using a portable plasma device. Stud Health Technol Inf 173:515–517

    Google Scholar 

  38. Barekzi N, Laroussi M (2012) Dose-dependent killing of leukemia cells by low-temperature plasma. J Phys D-Appl Phys 45:422002

    Google Scholar 

  39. Partecke LI, Evert K, Haugk J, Doering F, Normann L et al (2012) Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer 12:473

    Article  Google Scholar 

  40. Arndt S, Wacker E, Li YF, Shimizu T, Thomas HM et al (2013) Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Exp Dermatol 22:284–289

    Article  Google Scholar 

  41. Vandamme M, Robert E, Pesnel S, Barbosa E, Dozias S et al (2010) Antitumor effect of plasma treatment on U87 Glioma Xenografts: preliminary results. Plasma Processes Polym 7:264–273

    Article  Google Scholar 

  42. Brulle L, Vandamme M, Ries D, Martel E, Robert E et al (2012) Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model. PLoS ONE 7:e52653

    Article  ADS  Google Scholar 

  43. Walk RM, Snyder JA, Srinivasan P, Kirsch J, Diaz SO et al (2013) Cold atmospheric plasma for the ablative treatment of neuroblastoma. J Pediatr Surg 48:67–73

    Article  Google Scholar 

  44. Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol 14(Suppl 5):v1–49

    Article  Google Scholar 

  45. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  Google Scholar 

  46. Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M (2006) Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2:494–503 (quiz 491 p following 516)

    Google Scholar 

  47. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  Google Scholar 

  48. Ohgaki H, Kleihues P (2011) Genetic profile of astrocytic and oligodendroglial gliomas. Brain Tumor Pathol 28:177–183

    Article  Google Scholar 

  49. Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T et al (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899

    Article  Google Scholar 

  50. Weller M (2011) Novel diagnostic and therapeutic approaches to malignant glioma. Swiss Med Wkly 141:w13210

    Google Scholar 

  51. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  Google Scholar 

  52. Hickman JA, Stevens MF, Gibson NW, Langdon SP, Fizames C et al (1985) Experimental antitumor activity against murine tumor model systems of 8-carbamoyl-3-(2-chloroethyl)imidazo[5,1-d]-1,2,3,5-tetrazin-4(3 H)-one (mitozolomide), a novel broad-spectrum agent. Cancer Res 45:3008–3013

    Google Scholar 

  53. Stevens MF, Hickman JA, Langdon SP, Chubb D, Vickers L et al (1987) Antitumor activity and pharmacokinetics in mice of 8-carbamoyl-3-methyl-imidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one (CCRG 81045; M & B 39831), a novel drug with potential as an alternative to dacarbazine. Cancer Res 47:5846–5852

    Google Scholar 

  54. Newlands ES, Blackledge GR, Slack JA, Rustin GJ, Smith DB et al (1992) Phase I trial of temozolomide (CCRG 81045: M&B 39831: NSC 362856). Br J Cancer 65:287–291

    Article  Google Scholar 

  55. Karran P, Macpherson P, Ceccotti S, Dogliotti E, Griffin S et al (1993) O6-methylguanine residues elicit DNA repair synthesis by human cell extracts. J Biol Chem 268:15878–15886

    Google Scholar 

  56. Karran P, Bignami M (1994) DNA damage tolerance, mismatch repair and genome instability. BioEssays 16:833–839

    Article  Google Scholar 

  57. Friedman HS, Kerby T, Calvert H (2000) Temozolomide and treatment of malignant glioma. Clin Cancer Res 6:2585–2597

    Google Scholar 

  58. Dumenco LL, Warman B, Hatzoglou M, Lim IK, Abboud SL et al (1989) Increase in nitrosourea resistance in mammalian cells by retrovirally mediated gene transfer of bacterial O6-alkylguanine-DNA alkyltransferase. Cancer Res 49:6044–6051

    Google Scholar 

  59. Tano K, Shiota S, Collier J, Foote RS, Mitra S (1990) Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine. Proc Natl Acad Sci USA 87:686–690

    Article  ADS  Google Scholar 

  60. Jaeckle KA, Eyre HJ, Townsend JJ, Schulman S, Knudson HM et al (1998) Correlation of tumor O6 methylguanine-DNA methyltransferase levels with survival of malignant astrocytoma patients treated with bis-chloroethylnitrosourea: a Southwest oncology group study. J Clin Oncol 16:3310–3315

    Google Scholar 

  61. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF et al (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–1354

    Article  Google Scholar 

  62. Hegi ME, Liu L, Herman JG, Stupp R, Wick W et al (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26:4189–4199

    Article  Google Scholar 

  63. Weller M, Felsberg J, Hartmann C, Berger H, Steinbach JP et al (2009) Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 27:5743–5750

    Article  Google Scholar 

  64. Melguizo C, Prados J, Gonzalez B, Ortiz R, Concha A et al (2012) MGMT promoter methylation status and MGMT and CD133 immunohistochemical expression as prognostic markers in glioblastoma patients treated with temozolomide plus radiotherapy. J Transl Med 10:250

    Article  Google Scholar 

  65. Weiler M, Hartmann C, Wiewrodt D, Herrlinger U, Gorlia T et al (2010) Chemoradiotherapy of newly diagnosed glioblastoma with intensified temozolomide. Int J Radiat Oncol Biol Phys 77:670–676

    Article  Google Scholar 

  66. Gaspar N, Marshall L, Perryman L, Bax DA, Little SE et al (2010) MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. Cancer Res 70:9243–9252

    Article  Google Scholar 

  67. Mirimanoff RO, Gorlia T, Mason W, Van den Bent MJ, Kortmann RD et al (2006) Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J Clin Oncol 24:2563–2569

    Article  Google Scholar 

  68. Felsberg J, Thon N, Eigenbrod S, Hentschel B, Sabel MC et al (2011) Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int J Cancer 129:659–670

    Article  Google Scholar 

  69. Brandes AA, Franceschi E, Tosoni A, Bartolini S, Bacci A et al (2010) O(6)-methylguanine DNA-methyltransferase methylation status can change between first surgery for newly diagnosed glioblastoma and second surgery for recurrence: clinical implications. Neuro Oncol 12:283–288

    Article  Google Scholar 

  70. Beier D, Schriefer B, Brawanski K, Hau P, Weis J et al (2012) Efficacy of clinically relevant temozolomide dosing schemes in glioblastoma cancer stem cell lines. J Neurooncol 109:45–52

    Article  Google Scholar 

  71. Dahlrot RH, Hermansen SK, Hansen S, Kristensen BW (2013) What is the clinical value of cancer stem cell markers in gliomas? Int J Clin Exp Pathol 6:334–348

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Köritzer .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Köritzer, J. (2014). Introduction. In: Biophysical Effects of Cold Atmospheric Plasma on Glial Tumor Cells. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06224-2_1

Download citation

Publish with us

Policies and ethics