Skip to main content

Bone Metastases

  • Chapter
  • First Online:
New Therapeutic Strategies in Lung Cancers
  • 1314 Accesses

Abstract

Approximately 30–40 % of patients with advanced lung cancer develop bone metastases. The newer therapies are extending survival and thus increasing further chance of developing bone metastases.

The development of bone metastases causes skeletal-related events (SREs) such as pathologic fractures, spinal cord compression, radiation therapy or surgery to bone, or hypercalcemia with debilitating consequences affecting patients’ health-related quality of life (QOL) and performance status. Poor performance status then prevents the patients to receive further lines of treatments which are available today. SREs are also associated with increased economic costs. In one clinical trial, most patients with bone metastases from non-small cell lung carcinoma (NSCLC) experienced an SRE within the first 5 months on study. Early detection of bone metastases can prevent the development of SREs but also avoids inappropriate implementation of major surgery or aggressive chemoradiation therapy.

With the new generation bisphosphonate zoledronic acid or denosumab (anti-RANKL activity), we can reduce the number of patients who experience at least one SRE, decrease the annual incidence of SREs and delay the median time to first SRE. These agents are effective even after the onset of SREs. They are well tolerated and most of the time the side effects are manageable. The biochemical markers of bone metabolism, especially N-telopeptide of type I collagen (NTX) and bone specific alkaline phosphatase (BALP) can be both prognostic and predictive markers for the patients with bone metastases from NSCLC and guide our decisions regarding their treatments with the new bone targeted agents.

Anticancer activity of both zoledronic acid and denosumab further supports their use as soon as bone metastases are diagnosed as they can contribute to a longer progression free and overall survival in patients with NSCLC. Future trials will inform us about the efficacy of these agents for prevention of bone metastases and possibly even the effects on visceral metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coleman RE. Skeletal complications of malignancy. Cancer. 1997;80(suppl):1588–94.

    Article  PubMed  CAS  Google Scholar 

  2. Mercadante S. Malignant bone pain: pathophysiology and treatment. Pain. 1997;69:1–18.

    Article  PubMed  CAS  Google Scholar 

  3. Hansen BH, Keller J, Laitinen M, et al. The Scandinavian Sarcoma Group Skeletal Metastasis Register. Survival after surgery for bone metastases in the pelvis and extremities. Acta Orthop Scand Suppl. 2004;75:11–5.

    Article  PubMed  CAS  Google Scholar 

  4. Delea TE, McKiernan JM, Liss M, et al. Impact of skeletal complications on total medical care costs in lung cancer patients with bone metastases. Proc Am Soc Clin Oncol. 2004;23:533 [Abstract 6064].

    Google Scholar 

  5. Rosen LS, Gordon D, Tchekmedyian NS, et al. Long-term efficacy and safety of zoledronic acid in the treatment of skeletal metastases in patients with non-small cell lung carcinoma and other solid tumors: a randomized, phase III, double-blind, placebo-controlled trial. Cancer. 2004;100:2613–21.

    Article  PubMed  CAS  Google Scholar 

  6. Mundy GR. Mechanisms of bone metastasis. Cancer. 1997;80(suppl):1546–56.

    Article  PubMed  CAS  Google Scholar 

  7. Saad F, Schulman CC. Role of bisphosphonates in prostate cancer. Eur Urol. 2004;45:26–34.

    Article  PubMed  CAS  Google Scholar 

  8. Coleman RE. Metastatic bone disease: clinical features, pathophysiology, and treatment strategies. Cancer Treat Rev. 2001;27:165–76.

    Article  PubMed  CAS  Google Scholar 

  9. Kakonen SM, Mundy GR. Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer. 2003;97(suppl):834–9.

    Article  PubMed  Google Scholar 

  10. Coleman RE. Bisphosphonates: clinical experience. Oncologist. 2004;9 suppl 4:14–27.

    Article  PubMed  CAS  Google Scholar 

  11. Lipton A. Pathophysiology of bone metastases: how this knowledge may lead to therapeutic intervention. J Support Oncol. 2004;2:205–13.

    PubMed  Google Scholar 

  12. Sabino MA, Mantyh PW. Pathophysiology of bone cancer pain. J Support Oncol. 2005;3:15–24.

    PubMed  CAS  Google Scholar 

  13. Iordanidou L, Trivizaki E, Saranti S, et al. Is there a role of whole body bone scan in early stages of non-small cell lung cancer patients? J BUON. 2006;11:491–7.

    PubMed  CAS  Google Scholar 

  14. Pfister DG, Johnson DH, Azzoli CG, et al. American Society of Clinical Oncology treatment of unresectable non-small cell lung cancer guideline: update 2003. J Clin Oncol. 2004;22:330–53.

    Article  PubMed  Google Scholar 

  15. Baum RP, Hellwig D, Mezzetti M. Position of nuclear medicine modalities in the diagnostic workup of cancer patients: lung cancer. Q J Nucl Med Mol Imaging. 2004;48:119–42.

    PubMed  CAS  Google Scholar 

  16. Silvestri GA, Tanoue LT, Margolis ML, et al. The non-invasive staging of non-small cell lung cancer: the guidelines. Chest. 2003;123(suppl):147S–56.

    Article  PubMed  Google Scholar 

  17. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: non-small cell lung cancer. 2008. http://www.nccn.org/professionals/physician_gls/PDF/nsclc.pdf.

  18. Bury T, Barreto A, Daenen F, et al. Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med. 1998;25:1244–7.

    Article  PubMed  CAS  Google Scholar 

  19. Gayed I, Vu T, Johnson M, et al. Comparison of bone and 2-deoxy-2-[18F] fluoro-D-glucose positron emission tomography in the evaluation of bony metastases in lung cancer. Mol Imaging Biol. 2003;5:26–31.

    Article  PubMed  Google Scholar 

  20. Hetzel M, Arslandemir C, Konig HH, et al. F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. J Bone Miner Res. 2003;18:2206–14.

    Article  PubMed  Google Scholar 

  21. Lipton A, Theriault RL, Hortobagyi GN, et al. Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: long term follow-up of two randomized, placebo-controlled trials. Cancer. 2000;88:1082–90.

    Article  PubMed  CAS  Google Scholar 

  22. Berenson JR, Lichtenstein A, Porter L, et al. Long term Pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group. J Clin Oncol. 1998;16:593–602.

    PubMed  CAS  Google Scholar 

  23. Saad F. Clinical benefit of zoledronic acid for the prevention of skeletal complications in advanced prostate cancer. Clin Prostate Cancer. 2005;4:31–7.

    Article  PubMed  CAS  Google Scholar 

  24. Lipton A. Bisphosphonate therapy in the oncology setting. Expert Opin Emerg Drugs. 2003;8(2):469–88.

    Article  PubMed  CAS  Google Scholar 

  25. Rosen LS, Gordon D, Tchekmedyian S, et al. Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: a phase III, double-blind, randomized trial – the Zoledronic Acid Lung Cancer and other Solid Tumors Study Group. J Clin Oncol. 2003;21:3150–7.

    Article  PubMed  CAS  Google Scholar 

  26. Delea T, McKiernan J, Liss M, et al. Cost of skeletal complications in patients with bone metastases of lung cancer [abstract]. Lung Cancer. 2003;41 suppl 2:S7 [Abstract O9].

    Article  Google Scholar 

  27. Delea T, Langer C, McKiernan J, et al. The cost of treatment of skeletal-related events in patients with bone metastases from lung cancer. Oncology. 2004;67:390–6.

    Article  PubMed  Google Scholar 

  28. Saad F, Lipton A, Cook R, et al. Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer. 2007;110:1860–7.

    Article  PubMed  Google Scholar 

  29. Weinfurt KP, Li Y, Castel LD, et al. The significance of skeletal-related events for the health-related quality of life of patients with metastatic prostate cancer. Ann Oncol. 2005;16:579–84.

    Article  PubMed  CAS  Google Scholar 

  30. Saba N, Khuri F. The role of bisphosphonates in the management of advanced cancer with a focus on non-small cell lung cancer. Part 2: clinical studies and economic analyses. Oncology. 2005;68:18–22.

    Article  PubMed  CAS  Google Scholar 

  31. Green JR. Preclinical profile and anticancer potential of zoledronic acid. In: Birch EV, editor. Trends in bone cancer research, vol. 24. New York: Nova Science Publishers Inc; 2006. p. 217–45.

    Google Scholar 

  32. Fleisch H. Development of bisphosphonates. Breast Cancer Res. 2002;4:30–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Green JR. Bisphosphonates: preclinical review. Oncologist. 2004;9 suppl 4:3–13.

    Article  PubMed  CAS  Google Scholar 

  34. Green J. Zoledronate: the preclinical pharmacology. Br J Clin Pract Suppl. 1996;87:16–8.

    PubMed  CAS  Google Scholar 

  35. Green JR, Muller K, Jaeggi KA. Preclinical pharmacology of CGP 42’446, a new, potent, heterocyclic bisphosphonate compound. J Bone Miner Res. 1994;9:745–51.

    Article  PubMed  CAS  Google Scholar 

  36. Hirsh V, Tchekmedyian NS, Rosen LS, et al. Clinical benefit of zoledronic acid in patients with lung cancer and other solid tumors: analysis based on history of skeletal complications. Clin Lung Cancer. 2004;6(3):170–4.

    Article  PubMed  CAS  Google Scholar 

  37. Bukowski R, Rosen L, Gordon D, et al. Long-term therapy with zoledronic acid is effective and safe in reducing the risk of skeletal complications in patients with bone metastases from non-small cell lung cancer (NSCLC) [poster]. In: 10th world conference on Lung Cancer (WCLC), Vancouver; 10–14 Aug 2003 [Abstract 150].

    Google Scholar 

  38. Conte P, Guarneri V. Safety of intravenous and oral bisphosphonates and compliance with dosing regimens. Oncologist. 2004;9 suppl 4:28–37.

    Article  PubMed  CAS  Google Scholar 

  39. Weitzman R, Sauter N, Eriksen EF, et al. Critical review: updated recommendations for the prevention, diagnosis, and treatment of osteonecrosis of the jaw in cancer patients – May 2006. Crit Rev Oncol Hematol. 2007;62:148–52.

    Article  PubMed  Google Scholar 

  40. Zometa [package insert]. East Hanover: Novartis Pharmaceuticals Corporation; 2005.

    Google Scholar 

  41. Durie BG, Katz M, Crowley J. Osteonecrosis of the jaw and bisphosphonates. N Engl J Med. 2005;353:99–102.

    Article  PubMed  CAS  Google Scholar 

  42. Hoff AO, Toth BB, Altundag K, et al. Frequency and risk factors associated with osteonecrosis of the jaw in cancer patients treated with intravenous bisphosphonates. J Bone Miner Res. 2008;23:826–36.

    Article  PubMed  CAS  Google Scholar 

  43. Pozzi S, Marcheselli R, Sacchi S, et al. Bisphosphonate-associated osteonecrosis of the jaw: a review of 35 cases and an evaluation of its frequency in multiple myeloma patients. Leuk Lymphoma. 2007;48:56–64.

    Article  PubMed  Google Scholar 

  44. Dimopoulos MA, Kastritis E, Bamia C, et al. Reduction of osteonecrosis of the jaw (ONJ) after implementation of preventive measures in patients with multiple myeloma treated with zoledronic acid. Ann Oncol. 2009;20:117–20.

    Article  PubMed  CAS  Google Scholar 

  45. Montefusco V, Gay F, Spina F, et al. Antibiotic prophylaxis before dental procedures may reduce the incidence of osteonecrosis of the jaw in patients with multiple myeloma treated with bisphosphonates. Leuk Lymphoma. 2008;49:2156–62.

    Article  PubMed  CAS  Google Scholar 

  46. Ripamonti CI, Maniezzo M, Campa T, et al. Decreased occurrence of osteonecrosis of the jaw after implementation of dental preventive measures in solid tumour patients with bone metastases treated with bisphosphonates. The experience of the National Cancer Institute of Milan. Ann Oncol. 2009;20:137–45.

    Article  PubMed  CAS  Google Scholar 

  47. Ripamonti C, Maniezzo M, Ghiringhelli R, et al. Medical oil suspension applications heal osteonecrosis of the jaw (ONJ) in patients treated with bisphosphonates (BPs): preliminary results of a single institution protocol [poster]. In: Primary therapy of early breast cancer, 11th international conference [Poster 194], St. Gallen, Switzerland; 2009.

    Google Scholar 

  48. Brown JE, Cook RJ, Major P, et al. Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J Natl Cancer Inst. 2005;97:59–69.

    Article  PubMed  CAS  Google Scholar 

  49. Lipton A, Cook R, Saad F, et al. Normalization of bone markers is associated with improved survival in patients with bone metastases from solid tumors and elevated bone resorption receiving zoledronic acid. Cancer. 2008;113:193–201.

    Article  PubMed  CAS  Google Scholar 

  50. Pectasides D, Nikolaou M, Farmakis D, et al. Clinical value of bone remodeling markers in patients with bone metastases treated with zoledronic acid. Anticancer Res. 2005;25:1457–63.

    PubMed  CAS  Google Scholar 

  51. Coleman RE, Major P, Lipton A, et al. Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. J Clin Oncol. 2005;23:4925–35.

    Article  PubMed  CAS  Google Scholar 

  52. Hirsh V, Major PP, Lipton A, et al. Zoledronic acid and survival in patients with metastatic bone disease from lung cancer and elevated markers of osteoclast activity. J Thorac Oncol. 2008;3:228–36.

    Article  PubMed  Google Scholar 

  53. Green JR. Antitumor effects of bisphosphonates. Cancer. 2003;97(suppl):840–7.

    Article  PubMed  Google Scholar 

  54. Matsumoto S, Kimura S, Segawa H, et al. Efficacy of combining the third generation bisphosphonate, zoledronate with imatinib mesylate in suppressing small cell lung cancer cell line proliferation [abstract]. Proc Am Soc Clin Oncol. 2003;22(suppl):684 [Abstract 2750].

    Google Scholar 

  55. Berger W, Kubista B, Elbling L, et al. The N-containing bisphosphonate zoledronic acid exerts potent anticancer activity against non-small cell lung cancer cells by inhibition of protein geranylgeranylation [abstract]. Proc Am Assoc Cancer Res. 2005;46 [Abstract 4981].

    Google Scholar 

  56. Ozturk OH, Bozcuk H, Burgucu D, et al. Cisplatin cytotoxicity is enhanced with zoledronic acid in A549 lung cancer cell line: preliminary results of an in vitro study. Cell Biol Int. 2007;31:1069–71.

    Article  PubMed  CAS  Google Scholar 

  57. Gjyrezi A, O’Brate A, Chanel-Vos C, et al. Zoledronic acid synergizes with Taxol in an HDAC6-dependant manner: novel mechanistic implications for combination anticancer therapy with taxanes [abstract]. Proc Am Assoc Cancer Res. 2007; [Abstract 1425].

    Google Scholar 

  58. Li YY, Chang JW, Chou WC, et al. Zoledronic acid is unable to induce apoptosis but slows tumor growth and prolongs survival for non-small cell lung cancers. Lung Cancer. 2008;59:180–91.

    Article  PubMed  Google Scholar 

  59. Matsumoto S, Kimura S, Segawa H, et al. Efficacy of the third-generation bisphosphonate, zoledronic acid alone and combined with anti-cancer agents against small cell lung cancer cell lines. Lung Cancer. 2005;47:31–9.

    Article  PubMed  Google Scholar 

  60. Landmeier S, Altvater B, Pscherer S, et al. Presentation of Epstein Barr virus (EBV) epitopes by activated human γδ T cells induces peptide-specific cytolytic CD8+ T cell expansion [abstract]. Blood. 2006;108 [Abstract 1738].

    Google Scholar 

  61. Fournier PG, Chirgwin JM, Guise TA. New insights into the role of T cells in the vicious cycle of bone metastases. Curr Opin Rheumatol. 2006;18:396–404.

    Article  PubMed  CAS  Google Scholar 

  62. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350:1655–64.

    Article  PubMed  CAS  Google Scholar 

  63. Hofbauer LC, Neubauer A, Heufelder AE. Receptor activator of nuclear factor-kappa B ligand and osteoprotegerin: potential implications for the pathogenesis and treatment of malignant bone diseases. Cancer. 2001;92:460–70.

    Article  PubMed  CAS  Google Scholar 

  64. Selvaggi G, Scagliotti GV. Management of bone metastases in cancer: a review. Crit Rev Oncol Hematol. 2005;56:365–78.

    Article  PubMed  Google Scholar 

  65. Body JJ, Facon T, Coleman RE, et al. A study of the biological receptor activator of nuclear factor-kappa B ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res. 2006;12:1221–8.

    Article  PubMed  CAS  Google Scholar 

  66. Fizazi K, Lipton A, Mariette X, et al. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol. 2009;27:1564–71.

    Article  PubMed  CAS  Google Scholar 

  67. Lipton A, Steger GG, Figueroa J, et al. Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J Clin Oncol. 2007;25:4431–7.

    Article  PubMed  CAS  Google Scholar 

  68. Henry D, Costa L, Goldwasser F, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29(9):1125–32.

    Article  PubMed  CAS  Google Scholar 

  69. Henry D, et al. Randomized Study of Denosumab versus Zoledronic Acid for the Treatment of Bone metastases in Patients with Advanced Cancer (Excluding Breast and Prostate Cancer) or Multiple Myeloma. Eur J Cancer Suppl. 2009;7(3):11. Abstract 20LBA and Oral Presentation.

    Google Scholar 

  70. Tabrizi MA, Tseng CM, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11:81–8.

    Article  PubMed  CAS  Google Scholar 

  71. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84:548–58.

    Article  PubMed  CAS  Google Scholar 

  72. Scagliotti G, Hirsh V, Siena S, et al. Overall survival improvement in patients with lung cancer and bone metastases treated with denosumab versus zoledronic acid: subgroup analysis from a randomized, phase 3 study. J Thorac Oncol. 2012;7(12):1823–9.

    Article  PubMed  CAS  Google Scholar 

  73. Kitazawa S, Kitazawa R. RANK ligand is a prerequisite for cancer-associated osteolytic lesions. J Pathol. 2002;198:228–36.

    Article  PubMed  CAS  Google Scholar 

  74. Mundy GR. Metastasis to bone: causes, consequences, and therapeutic opportunities. Nat Rev Cancer. 2002;2:584–93.

    Article  PubMed  CAS  Google Scholar 

  75. Feeley BT, Liu NQ, Conduah AH, et al. Mixed metastatic lung cancer lesions in bone are inhibited by noggin overexpression and Rank: Fc administration. J Bone Miner Res. 2006;21:1571–80.

    Article  PubMed  CAS  Google Scholar 

  76. Miller R, Jones J, Roudier M, et al. The RANKL inhibitor OPG-Fc either alone, or in combination with docetaxel, blocks lung cancer-induced osteolytic lesions or reduces skeletal tumor burden in a murine model of non-small cell lung cancer in bone. Presented at the 9th international conference on Cancer-Induced Bone Disease, Arlington; 28–31 Oct 2009.

    Google Scholar 

  77. Miller RE, Roudier M, Jones J, et al. RANK ligand inhibition plus docetaxel improves survival and reduces tumor burden in a murine model of prostate cancer bone metastasis. Mol Cancer Ther. 2008;7:2160–9.

    Article  PubMed  CAS  Google Scholar 

  78. Gonzalez-Suarez E, Jacob AP, Jones J, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468:103–7.

    Article  PubMed  CAS  Google Scholar 

  79. Chen LM, Kuo CH, Lai TY, et al. RANKL increases migration of human lung cancer cells through intercellular adhesion molecule-1 up-regulation. J Cell Biochem. 2011;112:933–41.

    Article  PubMed  CAS  Google Scholar 

  80. Jones DH, Nakashima T, Sanchez OH, et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature. 2006;440:692–6.

    Article  PubMed  CAS  Google Scholar 

  81. Peters S, Meylan E. Targeting receptor activator of nuclear factor-kappa B as a new therapy for bone metastasis in non-small cell lung cancer. Curr Opin Oncol. 2013;25(2):137–44.

    Article  PubMed  CAS  Google Scholar 

  82. Hirsh V. Bisphosphonates in lung cancer: can they provide benefits beyond prevention of skeletal morbidity? Anticancer Agents Med Chem. 2012;12(2):137–43.

    Article  PubMed  CAS  Google Scholar 

  83. Luo FR, Camuso A, McGlinchey K, et al. Evaluation of anti-osteoclastic activity of the novel, oral multi-targeted kinase inhibitor Dasatinib (BMS-354825). AACR-NCI-EORTC international conference: Molecular Targets and Cancer Therapeutics, Philadelphia; 14–18 Nov 2005, p 173 [Abstract B178].

    Google Scholar 

  84. Fields SZ, Parshad S, Anne M, et al. Activin receptor antagonists for cancer-related anemia and bone disease. Expert Opin Investig Drugs. 2013;22(1):87–101.

    Article  PubMed  CAS  Google Scholar 

  85. Borgstein NG, Yang Y, Condon CH, et al. ACE-011, a soluble activin receptor type IIA IgG-Fc fusion protein decreases follicle stimulating hormone and increases bone-specific alkaline phosphatase, a marker of bone formation, in postmenopausal healthy women. Cancer Res. 2008;69(2 Suppl):Abstract 1160.

    Google Scholar 

  86. Hellerstedt BA, Edelman G, Vogelzang NJ, et al. Activity of cabozantinib (XL 184) in metastatic NSCLC: results from a phase II randomized discontinuation trial (RDT). J Clin Oncol. 2012;30(suppl):Abstract 7514.

    Google Scholar 

  87. Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Hirsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hirsh, V. (2015). Bone Metastases. In: Peters, S., Besse, B. (eds) New Therapeutic Strategies in Lung Cancers. Springer, Cham. https://doi.org/10.1007/978-3-319-06062-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06062-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06061-3

  • Online ISBN: 978-3-319-06062-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics