Skip to main content

Time-dependent Models

  • Chapter
Nonlinear Dynamics of Structures
  • 2229 Accesses

Abstract

As shown in Chapters 3 and 4, the nonlinearity in dynamics is caused by changes in the direction of external forces due to large movements and to the nonlinearity of internal forces, caused by non-time-dependent phenomena studied in Chapter 5 and time-dependent phenomena that will be presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Creus G. (1986). Viscoelasticity – Basic theory and applications to concrete structures. Ed. By C. Brebbia and S. Orszag. Springer-Verlag. Berlin.

  2. 2.

    Christensen R. M. (1982). Theory of viscoelasticity. An introduction. Academic Press, Inc. N. York.

  3. 3.

    Fung Y. C. (1965). Foundations of solid mechanics. Prentice-Hall international series in dynamics.

  4. 4.

    Malvern, L. (1969). Introduction to the mechanics of a continuous medium. Prentice Hall, Englewood Cliffs, NJ.

  5. 5.

    Lubliner, J. (1990). Plasticity theory. MacMillan, New York.

  6. 6.

    . Simo, J. C and Hughes T.J.R, (1998). Elastoplasticity and Viscoplasticity. Computational Aspects. Springer Verlag.

  7. 7.

    Clough R.and Penzien J. (1977). Dynamics of Structures. Mc Graw-Hill - New York.

  8. 8.

    Perzyna P. (1963). The constitutive equation for rate sensitive plastic materials. Quart. Appl. Math., 20, 321–332.

  9. 9.

    Maugin, G. A. (1992). The thermodynamics of plasticity and fracture. Cambridge University Press.

  10. 10.

    Oller S. (2001). Fractura mecánica – Un enfoque global. CIMNE – Ediciones UPC. Barcelona.

  11. 11.

    The constitutive law decomposed into its volumetric and deviatoric parts is written as,

    $$ {\upsigma}_{ij}={\uplambda}^{\mathrm{Lame}}\;{\upvarepsilon}_{kk}^e\;{\updelta}_{ij}+2\;{\upmu}^{\mathrm{Lame}}\left({\upvarepsilon}_{ij}^e-{\scriptscriptstyle \frac{1}{3}}{\upvarepsilon}_{kk}^e\;{\updelta}_{ij}\right)={\uplambda}^{\mathrm{Lame}}\;{\upvarepsilon}_{kk}^e\;{\updelta}_{ij}+2\;{\upmu}^{\mathrm{Lame}}{e}_{ij}^e $$

    where Lame’s constants are λLame = E/3(1 − 2 ν) and μLame = G = E/2(1 + ν), E and ν are the Young modulus and the Poisson coefficient respectively. Since the von Mises flow is dominantly deviatoric (\( {\dot{\upvarepsilon}}_{kk}^{v\mathrm{p}}=0\Rightarrow {\dot{\upvarepsilon}}_{ij}^{v\mathrm{p}}\equiv {\dot{e}}_{ij}^{v\mathrm{p}}=\left[\left\langle \Phi \right\rangle /\upxi \right]\;\mathbf{s} \) ), the previous constitutive law is particularized in the following as σ ij  = λLameε kk δ ij  + 2G(e ij  − e vp ij ) = σ vol ij  − s ij

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 International Center for Numerical Methods in Engineering (CIMNE)

About this chapter

Cite this chapter

Oller, S. (2014). Time-dependent Models. In: Nonlinear Dynamics of Structures. Lecture Notes on Numerical Methods in Engineering and Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-05194-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05194-9_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05193-2

  • Online ISBN: 978-3-319-05194-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics