Skip to main content

The Potential Role of MicroRNA-Based Therapy for Lung Cancer Stem Cells

  • Chapter
  • First Online:
MicroRNA Targeted Cancer Therapy

Abstract

Lung cancer is the leading cause of cancer death and has a poor prognosis. A better understanding of lung cancer biology and improvements in treatment are strongly needed. Increasing evidence indicates that lung cancer stem cells (CSCs) are a therapeutic target for lung cancer. The CSC hypothesis is based on the simple concept that cancers contain a similar hierarchy with respect to self-renewal, differentiation and innate therapy resistance. Investigating putative lung CSCs will greatly improve our understanding of the origins of lung cancer and may lead to novel therapeutic approaches for selectively targeting these cells. During the last decade, a novel class of molecules, small non-protein-coding RNAs, was found to be involved in carcinogenesis. MicroRNAs (miRNAs) are a group of these RNAs that are now established as important regulators of gene expression. They are key players in various critical cellular processes such as proliferation, cell cycle progression, apoptosis and differentiation. Recent studies have shown that several miRNAs with critical roles in normal stem cell functions during development are important regulators of CSCs. Emerging evidence also illustrates that miRNAs control many signaling pathways that regulate CSCs. Targeting miRNAs involved in CSC regulation has the potential to provide novel miRNA-based therapeutic strategies in oncology. This chapter highlights recent findings on the crucial role of miRNAs in the maintenance, growth and behavior of lung CSCs, thus indicating the powerful potential for novel prognostic and therapeutic miRNA-based strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramalingam SS, Owonikoko TK, Khuri FR (2011) Lung cancer: new biological insights and recent therapeutic advances. CA Cancer J Clin 61:91–112

    Article  PubMed  Google Scholar 

  2. MacKinnon AC, Kopatz J, Sethi T (2010) The molecular and cellular biology of lung cancer: identifying novel therapeutic strategies. Br Med Bull 95:47–61

    Article  PubMed  Google Scholar 

  3. Pao W, Girard N (2011) New driver mutations in non-small-cell lung cancer. Lancet Oncol 12:175–180

    Article  PubMed  CAS  Google Scholar 

  4. Turrisi AT, Sherman CA (2002) The treatment of limited small cell lung cancer: a report of the progress made and future prospects. Eur J Cancer 38:279–291

    Article  PubMed  CAS  Google Scholar 

  5. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514

    Article  PubMed  CAS  Google Scholar 

  6. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  7. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  PubMed  CAS  Google Scholar 

  8. Carney DN, Gazdar AF, Bunn PA Jr, Guccion JG (1982) Demonstration of the stem cell nature of clonogenic tumor cells from lung cancer patients. Stem Cells 1:149–164

    PubMed  CAS  Google Scholar 

  9. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    Article  PubMed  CAS  Google Scholar 

  10. Wu X, Chen H, Wang X (2012) Can lung cancer stem cells be targeted for therapies? Cancer Treat Rev 38:580–588

    Article  PubMed  Google Scholar 

  11. Rivera C, Rivera S, Loriot Y, Vozenin MC, Deutsch E (2011) Lung cancer stem cell: new insights on experimental models and preclinical data. J Oncol 2011:549181

    Article  PubMed Central  PubMed  Google Scholar 

  12. Leung EL, Fiscus RR, Tung JW, Tin VP, Cheng LC et al (2010) Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One 5:e14062

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Qiu X, Wang Z, Li Y, Miao Y, Ren Y et al (2012) Characterization of sphere-forming cells with stem-like properties from the small cell lung cancer cell line H446. Cancer Lett 323:161–170

    Article  PubMed  CAS  Google Scholar 

  14. Chen YC, Hsu HS, Chen YW, Tsai TH, How CK et al (2008) Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 3:e2637

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Marhaba R, Zoller M (2004) CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol 35:211–231

    Article  PubMed  CAS  Google Scholar 

  16. Curtis SJ, Sinkevicius KW, Li D, Lau AN, Roach RR et al (2010) Primary tumor genotype is an important determinant in identification of lung cancer propagating cells. Cell Stem Cell 7:127–133

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Baek D, Villen J, Shin C, Camargo FD, Gygi SP et al (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Chen CZ (2005) MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 353:1768–1771

    Article  PubMed  CAS  Google Scholar 

  20. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198

    Article  PubMed  CAS  Google Scholar 

  21. Yu SL, Chen HY, Chang GC, Chen CY, Chen HW et al (2008) MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13:48–57

    Article  PubMed  CAS  Google Scholar 

  22. Bader AG, Brown D, Winkler M (2010) The promise of microRNA replacement therapy. Cancer Res 70:7027–7030

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Fujita Y, Takeshita F, Kuwano K, Ochiya T (2013) RNAi therapeutic platforms for lung diseases. Pharmaceuticals 6:223–250

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  PubMed  CAS  Google Scholar 

  25. Yu F, Yao H, Zhu P, Zhang X, Pan Q et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123

    Article  PubMed  CAS  Google Scholar 

  26. Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A et al (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130

    Article  PubMed  CAS  Google Scholar 

  27. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138:592–603

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17:313–319

    Article  PubMed  CAS  Google Scholar 

  29. Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5:899–904

    Article  PubMed  CAS  Google Scholar 

  30. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E et al (2008) Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2:333–344

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF et al (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 70:10433–10444

    Article  PubMed  CAS  Google Scholar 

  33. Liu C, Tang DG (2011) MicroRNA regulation of cancer stem cells. Cancer Res 71:5950–5954

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Zimmerman AL, Wu S (2011) MicroRNAs, cancer and cancer stem cells. Cancer Lett 300:10–19

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Osada H, Takahashi T (2011) let-7 and miR-17-92: small-sized major players in lung cancer development. Cancer Sci 102:9–17

    Article  PubMed  CAS  Google Scholar 

  36. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K et al (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67:7713–7722

    Article  PubMed  CAS  Google Scholar 

  37. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS et al (2008) Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A 105:3903–3908

    Article  PubMed Central  PubMed  Google Scholar 

  38. Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463:621–626

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Peter ME (2009) Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 8:843–852

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Li Y, VandenBoom TG 2nd, Kong D, Wang Z, Ali S et al (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69:6704–6712

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Kong D, Banerjee S, Ahmad A, Li Y, Wang Z et al (2010) Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 5:e12445

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. McCarty MF (2012) Metformin may antagonize Lin28 and/or Lin28B activity, thereby boosting let-7 levels and antagonizing cancer progression. Med Hypotheses 78:262–269

    Article  PubMed  CAS  Google Scholar 

  43. Newman MA, Thomson JM, Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14:1539–1549

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Barh D, Malhotra R, Ravi B, Sindhurani P (2010) MicroRNA let-7: an emerging next-generation cancer therapeutic. Curr Oncol 17:70–80

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL et al (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8:633–638

    Article  PubMed  CAS  Google Scholar 

  47. Lo WL, Yu CC, Chiou GY, Chen YW, Huang PI et al (2011) MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. J Pathol 223:482–495

    Article  PubMed  CAS  Google Scholar 

  48. Wu Q, Guo R, Lin M, Zhou B, Wang Y (2011) MicroRNA-200a inhibits CD133/1+ ovarian cancer stem cells migration and invasion by targeting E-cadherin repressor ZEB2. Gynecol Oncol 122:149–154

    Article  PubMed  CAS  Google Scholar 

  49. Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN et al (2010) Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 39:761–772

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Leal JA, Lleonart ME (2013) MicroRNAs and cancer stem cells: therapeutic approaches and future perspectives. Cancer Lett 338:174–183

    Article  PubMed  CAS  Google Scholar 

  51. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T et al (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17:211–215

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Chen Y, Zhu X, Zhang X, Liu B, Huang L (2010) Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 18:1650–1656

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17:193–199

    Article  PubMed  CAS  Google Scholar 

  54. Choi YJ, Lin CP, Ho JJ, He X, Okada N et al (2011) miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol 13:1353–1360

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Sun L, Wu Z, Shao Y, Pu Y, Miu W et al (2012) MicroRNA-34a suppresses cell proliferation and induces apoptosis in U87 glioma stem cells. Technol Cancer Res Treat 11:483–490

    PubMed  CAS  Google Scholar 

  56. Chiou GY, Cherng JY, Hsu HS, Wang ML, Tsai CM et al (2012) Cationic polyurethanes-short branch PEI-mediated delivery of Mir145 inhibited epithelial-mesenchymal transdifferentiation and cancer stem-like properties and in lung adenocarcinoma. J Control Release 159:240–250

    Article  PubMed  CAS  Google Scholar 

  57. Riggi N, Suva ML, De Vito C, Provero P, Stehle JC et al (2010) EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells. Genes Dev 24:916–932

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137:647–658

    Article  PubMed  CAS  Google Scholar 

  59. Cheng M, Yang L, Yang R, Yang X, Deng J et al (2013) A microRNA-135a/b binding polymorphism in CD133 confers decreased risk and favorable prognosis of lung cancer in Chinese by reducing CD133 expression. Carcinogenesis 34:2292–2299

    Article  PubMed  CAS  Google Scholar 

  60. Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E et al (2009) Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci U S A 106:16281–16286

    Article  PubMed Central  PubMed  Google Scholar 

  61. Lin CW, Chang YL, Chang YC, Lin JC, Chen CC et al (2013) MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nat Commun 4:1877

    Article  PubMed  CAS  Google Scholar 

  62. Vaira V, Faversani A, Martin NM, Garlick DS, Ferrero S et al (2013) Regulation of lung cancer metastasis by Klf4-Numb-like signaling. Cancer Res 73:2695–2705

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Hong L, Han Y, Zhang H, Li M, Gong T et al (2010) The prognostic and chemotherapeutic value of miR-296 in esophageal squamous cell carcinoma. Ann Surg 251:1056–1063

    Article  PubMed  Google Scholar 

  64. Yu J, Li A, Hong SM, Hruban RH, Goggins M (2012) MicroRNA alterations of pancreatic intraepithelial neoplasias. Clin Cancer Res 18:981–992

    Article  PubMed Central  PubMed  Google Scholar 

  65. Vaira V, Faversani A, Dohi T, Montorsi M, Augello C et al (2012) miR-296 regulation of a cell polarity-cell plasticity module controls tumor progression. Oncogene 31:27–38

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Martin-Belmonte F, Perez-Moreno M (2012) Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer 12:23–38

    CAS  Google Scholar 

  67. Fundia AF, Gorla NB, Bonduel MM, Azpilicueta O, Lejarraga H et al (1992) Increased expression of 5q31 fragile site in a Bloom syndrome family. Hum Genet 89:569–572

    Article  PubMed  CAS  Google Scholar 

  68. Thorland EC, Myers SL, Gostout BS, Smith DI (2003) Common fragile sites are preferential targets for HPV16 integrations in cervical tumors. Oncogene 22:1225–1237

    Article  PubMed  CAS  Google Scholar 

  69. Kesanakurti D, Maddirela DR, Chittivelu S, Rao JS, Chetty C (2013) Suppression of tumor cell invasiveness and in vivo tumor growth by microRNA-874 in non-small cell lung cancer. Biochem Biophys Res Commun 434:627–633

    Article  PubMed  CAS  Google Scholar 

  70. Sugihara E, Saya H (2013) Complexity of cancer stem cells. Int J Cancer 132:1249–1259

    Article  PubMed  CAS  Google Scholar 

  71. Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9:775–789

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Boudreau RL, Martins I, Davidson BL (2009) Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther 17:169–175

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Chernolovskaya EL, Zenkova MA (2010) Chemical modification of siRNA. Curr Opin Mol Ther 12:158–167

    PubMed  CAS  Google Scholar 

  74. Li SD, Huang L (2006) Targeted delivery of antisense oligodeoxynucleotide and small interference RNA into lung cancer cells. Mol Pharm 3:579–588

    Article  PubMed  CAS  Google Scholar 

  75. Xu CX, Jere D, Jin H, Chang SH, Chung YS et al (2008) Poly(ester amine)-mediated, aerosol-delivered Akt1 small interfering RNA suppresses lung tumorigenesis. Am J Respir Crit Care Med 178:60–73

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Jere D, Xu CX, Arote R, Yun CH, Cho MH et al (2008) Poly(beta-amino ester) as a carrier for si/shRNA delivery in lung cancer cells. Biomaterials 29:2535–2547

    Article  PubMed  CAS  Google Scholar 

  77. Ren XL, Xu YM, Bao W, Fu HJ, Wu CG et al (2009) Inhibition of non-small cell lung cancer cell proliferation and tumor growth by vector-based small interfering RNAs targeting HER2/neu. Cancer Lett 281:134–143

    Article  PubMed  CAS  Google Scholar 

  78. Zamora-Avila DE, Zapata-Benavides P, Franco-Molina MA, Saavedra-Alonso S, Trejo-Avila LM et al (2009) WT1 gene silencing by aerosol delivery of PEI-RNAi complexes inhibits B16-F10 lung metastases growth. Cancer Gene Ther 16:892–899

    Article  PubMed  CAS  Google Scholar 

  79. He XY, Chen JX, Zhang Z, Li CL, Peng QL et al (2010) The let-7a microRNA protects from growth of lung carcinoma by suppression of k-Ras and c-Myc in nude mice. J Cancer Res Clin Oncol 136:1023–1028

    Article  PubMed  CAS  Google Scholar 

  80. Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K et al (2010) Regression of murine lung tumors by the let-7 microRNA. Oncogene 29:1580–1587

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A et al (2008) The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7:759–764

    Article  PubMed  CAS  Google Scholar 

  82. Shi S, Han L, Gong T, Zhang Z, Sun X (2013) Systemic delivery of microRNA-34a for cancer stem cell therapy. Angew Chem Int Ed Engl 52:3901–3905

    Article  PubMed  CAS  Google Scholar 

  83. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  CAS  Google Scholar 

  84. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Lindow M, Kauppinen S (2012) Discovering the first microRNA-targeted drug. J Cell Biol 199:407–412

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Li YJ, Zhang YX, Wang PY, Chi YL, Zhang C et al (2012) Regression of A549 lung cancer tumors by anti-miR-150 vector. Oncol Rep 27:129–134

    PubMed  CAS  Google Scholar 

  87. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    Article  PubMed  CAS  Google Scholar 

  88. Wang Z (2011) The principles of MiRNA-masking antisense oligonucleotides technology. Methods Mol Biol 676:43–49

    Article  PubMed  CAS  Google Scholar 

  89. Ma L, Young J, Prabhala H, Pan E, Mestdagh P et al (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12:247–256

    PubMed Central  PubMed  CAS  Google Scholar 

  90. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM et al (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137:1032–1046

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Okuda H, Xing F, Pandey PR, Sharma S, Watabe M et al (2013) miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res 73:1434–1444

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Fan X, Chen X, Deng W, Zhong G, Cai Q et al (2013) Up-regulated microRNA-143 in cancer stem cells differentiation promotes prostate cancer cells metastasis by modulating FNDC3B expression. BMC Cancer 13:61

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Haraguchi T, Ozaki Y, Iba H (2009) Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells. Nucleic Acids Res 37:e43

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Haraguchi T, Nakano H, Tagawa T, Ohki T, Ueno Y et al (2012) A potent 2′–O-methylated RNA-based microRNA inhibitor with unique secondary structures. Nucleic Acids Res 40:e58

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant-in-aid for the Third-Term Comprehensive 10-Year Strategy for Cancer Control of Japan; Project for Development of Innovative Research on Cancer Therapeutics (P-Direct); Scientific Research on Priority Areas Cancer, Scientific Research on Innovative Areas (“functional machinery for non-coding RNAs”) from the Japanese Ministry of Education, Culture, Sports, Science, and Technology; the National Cancer Center Research and Development Fund (23-A-2, 23-A-7, 23-C-6,); the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NiBio), the Project for Development of Innovative Research on Cancer Therapeutics; and the Japan Society for the Promotion of Science (JSPS) through the “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)” initiated by the Council for Science and Technology Policy (CSTP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Ochiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fujita, Y., Kuwano, K., Ochiya, T. (2014). The Potential Role of MicroRNA-Based Therapy for Lung Cancer Stem Cells. In: Sarkar, F. (eds) MicroRNA Targeted Cancer Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-05134-5_4

Download citation

Publish with us

Policies and ethics