Skip to main content

miRNA Regulation of DNA Damage Repair Proteins in Cancer Cells: Interplay of ATM, TRAIL and miRNA

  • Chapter
  • First Online:
MicroRNA Targeted Cancer Therapy

Abstract

It is becoming progressively more understandable that miRNA subsets regulate post-transcriptional processing of modulators of wide ranging cellular mechanisms. There are visible knowledge gaps related to current comprehensions about protein network that ultimately regulates decisions of DNA damage repair and apoptosis. Although evidence, in general, is sparse and fragmentary, merging knowledge links TRAIL mediated signaling, DNA damage repair and miRNA control of both of these processes as functional pathways having a key role in cell growth arrest, DNA repair and death. Methodological and technical advancements over the last decade have helped to reveal that these pathways may act in concert and there is a need to explore multiple mechanisms in parallel. Data obtained through high throughput technologies is deepening our understanding regarding miRNA regulation of DNA damage repair proteins. Moreover, confluence of information suggests that miRNAs are triggered by ATM as well as in genomically rearranged cancer cells, there is a notable alteration in expression of different miRNAs. Studies in this rapidly emerging area have started to address miRNA regulation and transportation of pre-miRNAs from nucleus to cytoplasm by ATM. Surprisingly, ATM has diametrically opposed roles in regulating TRAIL mediated apoptosis in cancer cells. In addition receptors of TRAIL had previously been reported to be regulated by ATM/p53 signaling axis. Therefore it will be interesting to study how miRNA mediated negative control of ATM influences death receptors and TRAIL mediated signaling. New technologies for identification of a larger subset of miRNA involved in modulation of regulators of DNA damage signaling and layered regulation of miRNAs by ATM and genomic rearrangements will surely help in catalyzing the transit from a segmented view of control of DNA damage repair modulators by miRNA to a conceptual continuum. Considerably improved information of these integrated pathways is essential in getting a step closer to personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhatti S, Kozlov S, Farooqi AA, Naqi A, Lavin M, Khanna KK (2011) ATM protein kinase: the linchpin of cellular defenses to stress. Cell Mol Life Sci 68(18):2977–3006

    Article  PubMed  CAS  Google Scholar 

  2. Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14(4):197–210

    Article  CAS  Google Scholar 

  3. Cortez MA, Ivan C, Zhou P, Wu X, Ivan M, Calin GA (2010) microRNAs in cancer: from bench to bedside. Adv Cancer Res 108:113–157

    Article  PubMed  CAS  Google Scholar 

  4. Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179

    Article  PubMed  CAS  Google Scholar 

  5. Wan G, Zhang X, Langley RR, Liu Y, Hu X, Han C, Peng G, Ellis LM, Jones SN, Lu X (2013) DNA-Damage-Induced Nuclear Export of Precursor MicroRNAs Is Regulated by the ATM-AKT Pathway. Cell Rep pii: S2211–1247(13)00271–4

    Google Scholar 

  6. Huang Y, Chuang AY, Ratovitski EA (2011) Phospho-ΔNp63α/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure. Cell Cycle 10(22):3938–3947

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Huang Y, Chuang A, Hao H, Talbot C, Sen T, Trink B, Sidransky D, Ratovitski E (2011) Phospho-ΔNp63α is a key regulator of the cisplatin-induced microRNAome in cancer cells. Cell Death Differ 18(7):1220–1230

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Saleh AD, Savage JE, Cao L, Soule BP, Ly D, DeGraff W, Harris CC, Mitchell JB, Simone NL (2011) Cellular stress induced alterations in microRNA let-7a and let-7b expression are dependent on p53. PLoS One 6(10):e24429

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Martin NT, Nakamura K, Davies R, Nahas SA, Brown C, Tunuguntla R, Gatti RA, Hu H (2013) ATM-dependent MiR-335 targets CtIP and modulates the DNA damage response. PLoS Genet 9(5):e1003505

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Hesse JE, Liu L, Innes CL, Cui Y, Palii SS, Paules RS (2013) Genome-wide small RNA sequencing and gene expression analysis reveals a microRNA Profile of cancer susceptibility in ATM-deficient human mammary epithelial cells. PLoS One 8(5):e64779

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Bisso A, Faleschini M, Zampa F, Capaci V, De Santa J, Santarpia L, Piazza S, Cappelletti V, Daidone M, Agami R, Del Sal G (2013) Oncogenic miR-181a/b affect the DNA damage response in aggressive breast cancer. Cell Cycle 12(11):1679–1687

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Wang Y, Yu Y, Tsuyada A, Ren X, Wu X, Stubblefield K, Rankin-Gee EK, Wang SE (2011) Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 30(12):1470–1480

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Lin F, Li R, Pan ZX, Zhou B, de Yu B, Wang XG, Ma XS, Han J, Shen M, Liu HL (2012) MiR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS One 7(6):e38640

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Ng WL, Yan D, Zhang X, Mo YY, Wang Y (2010) Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line: M059J. DNA Repair (Amst) 9(11):1170–1175

    Article  CAS  Google Scholar 

  15. Brunner S, Herndler-Brandstetter D, Arnold CR, Wiegers GJ, Villunger A, Hackl M, Grillari J, Moreno-Villanueva M, Bürkle A, Grubeck-Loebenstein B (2012) Upregulation of miR-24 is associated with a decreased DNA damage response upon etoposide treatment in highly differentiated CD8(+) T cells sensitizing them to apoptotic cell death. Aging Cell 11(4):579–587

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Shen C, Houghton PJ (2013) The mTOR pathway negatively controls ATM by up-regulating miRNAs. Proc Natl Acad Sci U S A 110:11869–11874

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wu CW, Dong YJ, Liang QY, He XQ, Ng SS, Chan FK, Sung JJ, Yu J (2013) MicroRNA-18a attenuates DNA damage repair through suppressing the expression of ataxia telangiectasia mutated in colorectal cancer. PLoS One 8(2):e57036. doi:10.1371/journal.pone.0057036

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Guo X, Yang C, Qian X, Lei T, Li Y, Shen H, Fu L, Xu B (2013) Estrogen receptor α regulates ATM Expression through miRNAs in breast cancer. Clin Cancer Res 19(18):4994–5002

    Google Scholar 

  19. Chang L, Hu W, Ye C, Yao B, Song L, Wu X, Ding N, Wang J, Zhou G (2012) MiR-3928 activates ATR pathway by targeting Dicer. RNA Biol 9(10):1247–1254

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Wang J, He J, Su F, Ding N, Hu W, Yao B, Wang W, Zhou G (2013) Repression of ATR pathway by miR-185 enhances radiation-induced apoptosis and proliferation inhibition. Cell Death Dis 4:e699

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Garcia AI, Buisson M, Bertrand P, Rimokh R, Rouleau E, Lopez BS, Lidereau R, Mikaélian I, Mazoyer S (2011) Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med 3(5):279–290

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Krishnan K, Steptoe AL, Martin HC, Wani S, Nones K, Waddell N, Mariasegaram M, Simpson PT, Lakhani SR, Gabrielli B, Vlassov A, Cloonan N, Grimmond SM (2013) MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA 19(2):230–242. doi:10.1261/rna.034926.112

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Wang Y, Huang JW, Calses P, Kemp CJ, Taniguchi T (2012) MiR-96 downregulates REV1 and RAD51 to promote cellular sensitivity to cisplatin and PARP inhibition. Cancer Res 72(16):4037–4046

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Wang Y, Huang JW, Li M, Cavenee WK, Mitchell PS, Zhou X, Tewari M, Furnari FB, Taniguchi T (2011) MicroRNA-138 modulates DNA damage response by repressing histone H2AX expression. Mol Cancer Res 9(8):1100–1111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Mueller AC, Sun D, Dutta A (2013) The miR-99 family regulates the DNA damage response through its target SNF2H. Oncogene 32(9):1164–1172

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Zhang X, Wan G, Mlotshwa S, Vance V, Berger FG, Chen H, Lu X (2010) Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res 70(18):7176–7186

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. de Oliveira PE, Zhang L, Wang Z, Lazo JS (2009) Hypoxia-mediated regulation of Cdc25A phosphatase by p21 and miR-21. Cell Cycle 8(19):3157–3164

    Article  PubMed  Google Scholar 

  28. Pothof J, Verkaik NS, van IJcken W, Wiemer EA, Ta VT, van der Horst GT, Jaspers NG, van Gent DC, Hoeijmakers JH, Persengiev SP (2009) MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. EMBO J 28(14):2090–9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Cannell IG, Kong YW, Johnston SJ, Chen ML, Collins HM, Dobbyn HC, Elia A, Kress TR, Dickens M, Clemens MJ, Heery DM, Gaestel M, Eilers M, Willis AE, Bushell M (2010) P38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication. Proc Natl Acad Sci U S A 107(12):5375–5380

    Article  PubMed Central  PubMed  Google Scholar 

  30. Farooqi AA, Nawaz A, Javed Z, Bhatti S, Ismail M (2013) While at Rome miRNA and TRAIL do whatever BCR-ABL commands to do. Arch Immunol Ther Exp (Warsz) 61(1):59–74

    Article  CAS  Google Scholar 

  31. Fayyaz S, Farooqi AA (2013) MiRNA and TMPRSS2-ERG do not mind their own business in prostate cancer cells. Immunogenetics 65(5):315–332

    Article  PubMed  CAS  Google Scholar 

  32. Chen JM, Cooper DN, Férec C, Kehrer-Sawatzki H, Patrinos GP (2010) Genomic rearrangements in inherited disease and cancer. Semin Cancer Biol 20(4):222–233

    Article  PubMed  CAS  Google Scholar 

  33. Robin TP, Smith A, McKinsey E, Reaves L, Jedlicka P, Ford HL (2012) EWS/FLI1 regulates EYA3 in Ewing sarcoma via modulation of miRNA-708, resulting in increased cell survival and chemoresistance. Mol Cancer Res 10(8):1098–1108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. McKinsey EL, Parrish JK, Irwin AE, Niemeyer BF, Kern HB, Birks DK, Jedlicka P (2011) A novel oncogenic mechanism in Ewing sarcoma involving IGF pathway targeting by EWS/Fli1-regulated microRNAs. Oncogene 30(49):4910–4920

    Article  PubMed  CAS  Google Scholar 

  35. Jiang X, Huang H, Li Z, He C, Li Y, Chen P, Gurbuxani S, Arnovitz S, Hong GM, Price C, Ren H, Kunjamma RB, Neilly MB, Salat J, Wunderlich M, Slany RK, Zhang Y, Larson RA, Le Beau MM, Mulloy JC, Rowley JD, Chen J (2012) MiR-495 is a tumor-suppressor microRNA down-regulated in MLL-rearranged leukemia. Proc Natl Acad Sci U S A 109(47):19397–19402

    Article  PubMed Central  PubMed  Google Scholar 

  36. Nishi M, Eguchi-Ishimae M, Wu Z, Gao W, Iwabuki H, Kawakami S, Tauchi H, Inukai T, Sugita K, Hamasaki Y, Ishii E, Eguchi M (2013) Suppression of the let-7b microRNA pathway by DNA hypermethylation in infant acute lymphoblastic leukemia with MLL gene rearrangements. Leukemia 27(2):389–397

    Article  PubMed  CAS  Google Scholar 

  37. Stumpel DJ, Schotte D, Lange-Turenhout EA, Schneider P, Seslija L, de Menezes RX, Marquez VE, Pieters R, den Boer ML, Stam RW (2011) Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: major matters at a micro scale. Leukemia 5(3):429–439

    Article  CAS  Google Scholar 

  38. Schneider B, Nagel S, Ehrentraut S, Kaufmann M, Meyer C, Geffers R, Drexler HG, MacLeod RA (2012) Neoplastic MiR-17 92 deregulation at a DNA fragility motif (SIDD). Genes Chromosome Cancer 51(3):219–228

    Article  CAS  Google Scholar 

  39. Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT, Chen P, Wang Y, Yan M, Qian Z, Neilly MB, Jin J, Zhang Y, Bohlander SK, Zhang DE, Larson RA, Le Beau MM, Thirman MJ, Golub TR, Rowley JD, Chen J (2008) Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci U S A 105(40):15535–15540

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Schotte D, Lange-Turenhout EA, Stumpel DJ, Stam RW, Buijs-Gladdines JG, Meijerink JP, Pieters R, Den Boer ML (2010) Expression of miR-196b is not exclusively MLL-driven but is especially linked to activation of HOXA genes in pediatric acute lymphoblastic leukemia. Haematologica 95(10):1675–1682

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Rippe V, Dittberner L, Lorenz VN, Drieschner N, Nimzyk R, Sendt W, Junker K, Belge G, Bullerdiek J (2010) The two stem cell microRNA gene clusters C19MC and miR-371-3 are activated by specific chromosomal rearrangements in a subgroup of thyroid adenomas. PLoS One 5(3):e9485

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Mraz M, Dolezalova D, Plevova K, Stano Kozubik K, Mayerova V, Cerna K, Musilova K, Tichy B, Pavlova S, Borsky M, Verner J, Doubek M, Brychtova Y, Trbusek M, Hampl A, Mayer J, Pospisilova S (2012) MicroRNA-650 expression is influenced by immunoglobulin gene rearrangement and affects the biology of chronic lymphocytic leukemia. Blood 119(9):2110–2113

    Article  PubMed  CAS  Google Scholar 

  43. Parker BC, Annala MJ, Cogdell DE, Granberg KJ, Sun Y, Ji P, Li X, Gumin J, Zheng H, Hu L, Yli-Harja O, Haapasalo H, Visakorpi T, Liu X, Liu CG, Sawaya R, Fuller GN, Chen K, Lang FF, Nykter M, Zhang W (2013) The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J Clin Invest 123(2):855–865. doi:10.1172/JCI67144

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Hickey CJ, Schwind S, Radomska HS, Dorrance AM, Santhanam R, Mishra A, Wu YZ, Alachkar H, Maharry K, Nicolet D, Mrózek K, Walker A, Eiring AM, Whitman SP, Becker H, Perrotti D, Wu LC, Zhao X, Fehniger TA, Vij R, Byrd JC, Blum W, Lee LJ, Caligiuri MA, Bloomfield CD, Garzon R, Marcucci G (2013) Lenalidomide-mediated enhanced translation of C/EBPα-p30 protein up-regulates expression of the antileukemic microRNA-181a in acute myeloid leukemia. Blood 121(1):159–169

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Kotani A, Ha D, Hsieh J, Rao PK, Schotte D, den Boer ML, Armstrong SA, Lodish HF (2009) MiR-128b is a potent glucocorticoid sensitizer in MLL-AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221. Blood 114(19):4169–4178

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Diakos C, Zhong S, Xiao Y, Zhou M, Vasconcelos GM, Krapf G, Yeh RF, Zheng S, Kang M, Wiencke JK, Pombo-de-Oliveira MS, Panzer-Grümayer R, Wiemels JL (2010) TEL-AML1 regulation of survivin and apoptosis via miRNA-494 and miRNA-320a. Blood 116(23):4885–4893

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Herrero Martín D, Boro A, Schäfer BW (2013) Cell-based small-molecule compound screen identifies fenretinide as potential therapeutic for translocation-positive rhabdomyosarcoma. PLoS One 8(1):e55072. doi:10.1371/journal.pone.0055072

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Desjobert C, Renalier MH, Bergalet J, Dejean E, Joseph N, Kruczynski A, Soulier J, Espinos E, Meggetto F, Cavaillé J, Delsol G, Lamant L (2011) MiR-29a down-regulation in ALK-positive anaplastic large cell lymphomas contributes to apoptosis blockade through MCL-1 overexpression. Blood 117(24):6627–6637

    Article  PubMed  CAS  Google Scholar 

  49. Li Z, Huang H, Chen P, He M, Li Y, Arnovitz S, Jiang X, He C, Hyjek E, Zhang J, Zhang Z, Elkahloun A, Cao D, Shen C, Wunderlich M, Wang Y, Neilly MB, Jin J, Wei M, Lu J, Valk PJ, Delwel R, Lowenberg B, Le Beau MM, Vardiman J, Mulloy JC, Zeleznik-Le NJ, Liu PP, Zhang J, Chen J (2012) MiR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia. Nat Commun 3:688

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Borjigin N, Ohno S, Wu W, Tanaka M, Suzuki R, Fujita K, Takanashi M, Oikawa K, Goto T, Motoi T, Kosaka T, Yamamoto K, Kuroda M (2012) TLS-CHOP represses miR-486 expression, inducing upregulation of a metastasis regulator PAI-1 in human myxoid liposarcoma. Biochem Biophys Res Commun 427(2):355–360

    Article  PubMed  CAS  Google Scholar 

  51. den Hollander MW, Gietema JA, de Jong S, Walenkamp AM, Reyners AK, Oldenhuis CN, de Vries EG (2013) Translating TRAIL-receptor targeting agents to the clinic. Cancer Lett 332(2):194–201

    Article  CAS  Google Scholar 

  52. Thangaraju S, Subramani E, Chakravarty B, Chaudhury K (2012) Therapeutic targeting of the TNF superfamily: a promising treatment for advanced endometrial adenocarcinoma. Gynecol Oncol 127(2):426–432

    Article  PubMed  CAS  Google Scholar 

  53. Shirley S, Morizot A, Micheau O (2011) Regulating TRAIL receptor-induced cell death at the membrane : a deadly discussion. Recent Pat Anticancer Drug Discov 6(3):311–323

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Voelkel-Johnson C (2011) TRAIL-mediated signaling in prostate, bladder and renal cancer. Nat Rev Urol 8(8):417–427

    Article  PubMed  CAS  Google Scholar 

  55. Wu GS, Burns TF, McDonald ER 3rd, Meng RD, Kao G, Muschel R, Yen T, el-Deiry WS (1999) Induction of the TRAIL receptor KILLER/DR5 in p53-dependent apoptosis but not growth arrest. Oncogene 18(47):6411–6418

    Article  PubMed  CAS  Google Scholar 

  56. Yang TY, Chang GC, Chen KC, Hung HW, Hsu KH, Wu CH, Sheu GT, Hsu SL (2013) Pemetrexed induces both intrinsic and extrinsic apoptosis through ataxia telangiectasia mutated/p53-dependent and -independent signaling pathways. Mol Carcinog 52(3):183–194

    Article  PubMed  CAS  Google Scholar 

  57. Liu Y, Gao F, Jiang H, Niu L, Bi Y, Young CY, Yuan H, Lou H (2013) Induction of DNA damage and ATF3 by retigeric acid B, a novel topoisomerase II inhibitor, promotes apoptosis in prostate cancer cells. Cancer Lett 337(1):66–76. doi:10.1016/j.canlet.2013.05.022

    Article  PubMed  CAS  Google Scholar 

  58. Stagni V, Mingardi M, Santini S, Giaccari D, Barilà D (2010) ATM kinase activity modulates cFLIP protein levels: potential interplay between DNA damage signalling and TRAIL-induced apoptosis. Carcinogenesis 31(11):1956–1963

    Article  PubMed  CAS  Google Scholar 

  59. Ivanov VN, Zhou H, Partridge MA, Hei TK (2009) Inhibition of ataxia telangiectasia mutated kinase activity enhances TRAIL-mediated apoptosis in human melanoma cells. Cancer Res 69(8):3510–3519

    Article  PubMed  CAS  Google Scholar 

  60. Solier S, Sordet O, Kohn KW, Pommier Y (2009) Death receptor-induced activation of the Chk2- and histone H2AX-associated DNA damage response pathways. Mol Cell Biol 29(1):68–82

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Gotanda K, Hirota T, Matsumoto N, Ieiri I (2013) MicroRNA-433 negatively regulates the expression of thymidylate synthase (TYMS) responsible for 5-fluorouracil sensitivity in HeLa cells. BMC Cancer 13(1):369

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Pouliot LM, Chen YC, Bai J, Guha R, Martin SE, Gottesman MM, Hall MD (2012) Cisplatin sensitivity mediated by WEE1 and CHK1 is mediated by miR-155 and the miR-15 family. Cancer Res 72(22):5945–5955

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammad Ahmad Farooqi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farooqi, A.A. (2014). miRNA Regulation of DNA Damage Repair Proteins in Cancer Cells: Interplay of ATM, TRAIL and miRNA. In: Sarkar, F. (eds) MicroRNA Targeted Cancer Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-05134-5_16

Download citation

Publish with us

Policies and ethics