Skip to main content

MicroRNA Targeted Therapy for Overcoming Drug Resistance, Reversal of EMT and Elimination of Cancer Stem Cells in Prostate and Pancreatic Cancer

  • Chapter
  • First Online:
MicroRNA Targeted Cancer Therapy

Abstract

Emerging evidences have demonstrated that miRNAs could directly or indirectly regulate drug resistance through modulation of epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSCs) characteristics. Several miRNAs including let-7, miR-15/16, miR-200, miR-34a, miR-143/145, miR-21, miR-155, miR-197, and miR-221/222 have been found to play crucial roles in the control of drug resistance, EMT, and CSCs in pancreatic and prostate cancers. Therefore, targeting these miRNAs by synthetic agents, nutraceuticals, or synthetic oligonucleotide delivery could become a promising approach for overcoming drug resistance, reversal of EMT, and elimination of CSCs, which would likely lead successful treatment of outcome in patients diagnosed with pancreatic and prostate cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10:116–125

    Article  PubMed  CAS  Google Scholar 

  2. Hwang HW, Mendell JT (2007) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 96(Suppl):R40–R44

    PubMed  Google Scholar 

  3. Bao B, Ahmad A, Azmi AS et al (2013) Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol Chapter 14:Unit. doi:10.1002/0471141755.ph1425s61

  4. Hotz HG, Hotz B, Buhr HJ (2011) Genes associated with epithelial-mesenchymal transition: possible therapeutic targets in ductal pancreatic adenocarcinoma? Anticancer Agents Med Chem 11:448–454

    Article  PubMed  CAS  Google Scholar 

  5. Ni X, Long J, Cen P et al (2012) Pancreatic cancer tumour initiating cells: the molecular regulation and therapeutic values. J Cell Mol Med 16:988–994

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Bhat K, Wang F, Ma Q et al (2012) Advances in biomarker research for pancreatic cancer. Curr Pharm Des 18:2439–2451

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Hamada S, Satoh K, Fujibuchi W et al (2012) MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol Cancer Res 10:3–10

    Article  PubMed  CAS  Google Scholar 

  8. Tang S, Bonaroti J, Unlu S et al (2013) Sweating the small stuff: microRNAs and genetic changes define pancreatic cancer. Pancreas 42:740–759

    Article  PubMed  CAS  Google Scholar 

  9. Wang J, Chen J, Chang P et al (2009) MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila) 2:807–813

    Article  CAS  Google Scholar 

  10. Yabushita S, Fukamachi K, Tanaka H et al (2012) Circulating microRNAs in serum of human K-ras oncogene transgenic rats with pancreatic ductal adenocarcinomas. Pancreas 41:1013–1018

    Article  PubMed  CAS  Google Scholar 

  11. Nagathihalli NS, Nagaraju G (2011) RAD51 as a potential biomarker and therapeutic target for pancreatic cancer. Biochim Biophys Acta 1816:209–218

    PubMed  CAS  Google Scholar 

  12. Bryant JL, Britson J, Balko JM et al (2012) A microRNA gene expression signature predicts response to erlotinib in epithelial cancer cell lines and targets EMT. Br J Cancer 106:148–156

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Bhutia YD, Hung SW, Krentz M et al (2013) Differential processing of let-7a precursors influences RRM2 expression and chemosensitivity in pancreatic cancer: role of LIN-28 and SET oncoprotein. PLoS One 8:e53436

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Tan L, Sui X, Deng H et al (2011) Holoclone forming cells from pancreatic cancer cells enrich tumor initiating cells and represent a novel model for study of cancer stem cells. PLoS One 6:e23383

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Li Y, VandenBoom TG, Kong D et al (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69:6704–6712

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Wellner U, Schubert J, Burk UC et al (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11:1487–1495

    Article  PubMed  CAS  Google Scholar 

  17. Burk U, Schubert J, Wellner U et al (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Sureban SM, May R, Lightfoot SA et al (2011) DCAMKL-1 regulates epithelial-mesenchymal transition in human pancreatic cells through a miR-200a-dependent mechanism. Cancer Res 71:2328–2338

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Bao B, Wang Z, Ali S et al (2011) Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 112:2296–2306

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Bao B, Wang Z, Ali S et al (2011) Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett 307:26–36

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Brabletz S, Bajdak K, Meidhof S et al (2011) The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J 30:770–782

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Bao B, Ali S, Ahmad A et al (2012) Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PLoS One 7:e50165

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Kent OA, Mullendore M, Wentzel EA et al (2009) A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells. Cancer Biol Ther 8:2013–2024

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Nalls D, Tang SN, Rodova M et al (2011) Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One 6:e24099

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Ji Q, Hao X, Zhang M et al (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4:e6816

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Harazono Y, Muramatsu T, Endo H et al (2013) miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS One 8:e62757

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Hamada S, Satoh K, Miura S et al (2013) miR-197 induces epithelial-mesenchymal transition in pancreatic cancer cells by targeting p120 catenin. J Cell Physiol 228:1255–1263

    Article  PubMed  CAS  Google Scholar 

  28. Jung DE, Wen J, Oh T et al (2011) Differentially expressed microRNAs in pancreatic cancer stem cells. Pancreas 40:1180–1187

    Article  PubMed  CAS  Google Scholar 

  29. Peng X, Guo W, Liu T et al (2011) Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One 6:e20341

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Kojima K, Fujita Y, Nozawa Y et al (2010) MiR-34a attenuates paclitaxel-resistance of hormone-refractory prostate cancer PC3 cells through direct and indirect mechanisms. Prostate 70:1501–1512

    Article  PubMed  CAS  Google Scholar 

  31. Lucotti S, Rainaldi G, Evangelista M et al (2013) Fludarabine treatment favors the retention of miR-485-3p by prostate cancer cells: implications for survival. Mol Cancer 12:52

    Article  PubMed Central  PubMed  Google Scholar 

  32. Shi GH, Ye DW, Yao XD et al (2010) Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol Sin 31:867–873

    Article  PubMed  CAS  Google Scholar 

  33. Cao Q, Mani RS, Ateeq B et al (2011) Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell 20:187–199

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Li X, Chen YT, Josson S et al (2013) MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PLoS One 8:e70987

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Kong D, Banerjee S, Ahmad A et al (2010) Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 5:e12445

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Singh S, Chitkara D, Mehrazin R et al (2012) Chemoresistance in prostate cancer cells is regulated by miRNAs and Hedgehog pathway. PLoS One 7:e40021

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Liu C, Kelnar K, Liu B et al (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17:211–215

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Hsieh IS, Chang KC, Tsai YT et al (2013) MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis 34:530–538

    Article  PubMed  CAS  Google Scholar 

  39. Saini S, Majid S, Shahryari V et al (2012) miRNA-708 control of CD44(+) prostate cancer-initiating cells. Cancer Res 72:3618–3630

    Article  PubMed  CAS  Google Scholar 

  40. Li K, Liu C, Zhou B et al (2013) Role of EZH2 in the growth of prostate cancer stem cells isolated from LNCaP cells. Int J Mol Sci 14:11981–11993

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Liu YN, Yin JJ, Abou-Kheir W et al (2013) MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 32:296–306

    Article  PubMed  CAS  Google Scholar 

  42. Coppola V, Musumeci M, Patrizii M et al (2013) BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition. Oncogene 32:1843–1853

    Article  PubMed  CAS  Google Scholar 

  43. Kong D, Li Y, Wang Z et al (2009) miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells 27:1712–1721

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Tucci P, Agostini M, Grespi F et al (2012) Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proc Natl Acad Sci U S A 109:15312–15317

    Article  PubMed Central  PubMed  Google Scholar 

  45. Bao B, Ahmad A, Kong D et al (2012) Hypoxia induced aggressiveness of prostate cancer cells is linked with deregulated expression of VEGF, IL-6 and miRNAs that are attenuated by CDF. PLoS One 7:e43726

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Majid S, Dar AA, Saini S et al (2012) miR-23b represses proto-oncogene Src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer. Cancer Res 72:6435–6446

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Gupta PB, Onder TT, Jiang G et al (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659

    Article  PubMed  CAS  Google Scholar 

  48. Zhang GN, Liang Y, Zhou LJ et al (2011) Combination of salinomycin and gemcitabine eliminates pancreatic cancer cells. Cancer Lett 313:137–144

    Article  PubMed  CAS  Google Scholar 

  49. Kong D, Heath E, Chen W et al (2012) Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment. Am J Transl Res 4:14–23

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Kong D, Heath E, Chen W et al (2012) Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One 7:e33729

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Bao B, Ali S, Kong D et al (2011) Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One 6:e17850

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Bao B, Ali S, Banerjee S et al (2012) Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res 72:335–345

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Ali S, Ahmad A, Banerjee S et al (2010) Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 70:3606–3617

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Soubani O, Ali AS, Logna F et al (2012) Re-expression of miR-200 by novel approaches regulates the expression of PTEN and MT1-MMP in pancreatic cancer. Carcinogenesis 33:1563–1571

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Bao B, Wang Z, Ali S et al (2012) Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res (Phila) 5:355–364

    Article  CAS  Google Scholar 

  56. Babar IA, Cheng CJ, Booth CJ et al (2012) Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A 109:E1695–E1704

    Article  PubMed Central  PubMed  Google Scholar 

  57. Sureban SM, May R, Mondalek FG et al (2011) Nanoparticle-based delivery of siDCAMKL-1 increases microRNA-144 and inhibits colorectal cancer tumor growth via a Notch-1 dependent mechanism. J Nanobiotechnol 9:40

    Article  CAS  Google Scholar 

  58. Krutzfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  CAS  Google Scholar 

  59. Pramanik D, Campbell NR, Karikari C et al (2011) Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol Cancer Ther 10:1470–1480

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Liguori L, Falanga A et al (2013) MicroRNA 199b-5p delivery through stable nucleic acid lipid particles (SNALPs) in tumorigenic cell lines. Naunyn Schmiedebergs Arch Pharmacol 386:287–302

    Article  PubMed  CAS  Google Scholar 

  61. Wu X, Ding B, Gao J et al (2011) Second-generation aptamer-conjugated PSMA-targeted delivery system for prostate cancer therapy. Int J Nanomedicine 6:1747–1756

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ work cited in this review article was funded by grants from the National Cancer Institute, NIH (5R01CA083695, 5R01CA108535, 5R01CA131151, 5R01CA132794, 5R01CA154321, and 1R01CA164318 awarded to FHS). We also thank Puschelberg and Guido foundations for their generous financial contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlul H. Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, Y., Kong, D., Ahmad, A., Bao, B., Sarkar, F.H. (2014). MicroRNA Targeted Therapy for Overcoming Drug Resistance, Reversal of EMT and Elimination of Cancer Stem Cells in Prostate and Pancreatic Cancer. In: Sarkar, F. (eds) MicroRNA Targeted Cancer Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-05134-5_12

Download citation

Publish with us

Policies and ethics