Skip to main content

The Role of FBXL Subfamily of F-box Proteins in Tumorigenesis

  • Chapter
  • First Online:
SCF and APC E3 Ubiquitin Ligases in Tumorigenesis

Part of the book series: SpringerBriefs in Cancer Research ((BRIEFSCANCER))

  • 768 Accesses

Abstract

The FBXL subfamily is composed of 22 members including the well-characterized FBXL1 (also known as Skp2) and FBXL2 to FBXL21, each containing an F-box motif and a C-terminal Leu-rich repeat (LRR) domain (Fig. 3.1). Intensive studies have revealed an oncogenic role for Skp2, but the potential roles of other FBXL subfamily members in tumorigenesis have just begun to be appreciated. In this chapter, we primarily focus on summarizing the recent genetic, pathological as well as the biochemical evidence pinpointing a possible tumor suppressor or oncogenic role for each of the FBXL subfamily member proteins. In the following paragraphs, we discuss current advances in three major categories, including the physiological (mouse modeling), pathological (human clinical cancer relevance), and biochemical evidence (updated ubiquitin substrates). These three experimental evidence categories will provide insights to facilitate our understanding for their roles in tumorigenesis (Table 3.4). As stated in previous chapters, given the fact that physiological evidence (mouse modeling results) is considered as the strongest supportive data to implicate any given F-box protein in tumorigenesis (Tables 3.2 and 3.3), we choose to summarize FBXL members with available mouse genetic models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer. 2008;8(6):438–49.

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Jin J, et al. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 2004;18(21):2573–80.

    PubMed Central  PubMed  CAS  Google Scholar 

  3. Chan CH, et al. Regulation of Skp2 expression and activity and its role in cancer progression. ScientificWorldJournal. 2010;10:1001–15.

    PubMed  CAS  Google Scholar 

  4. Carrano AC, Pagano M. Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression. J Cell Biol. 2001;153(7):1381–90.

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Signoretti S, et al. Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest. 2002;110(5):633–41.

    PubMed Central  PubMed  CAS  Google Scholar 

  6. Waltregny D, et al. Androgen-driven prostate epithelial cell proliferation and differentiation in vivo involve the regulation of p27. Mol Endocrinol. 2001;15(5):765–82.

    PubMed  CAS  Google Scholar 

  7. Lu L, Schulz H, Wolf DA. The F-box protein SKP2 mediates androgen control of p27 stability in LNCaP human prostate cancer cells. BMC Cell Biol. 2002;3:22.

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Kullmann MK, et al. The p27-Skp2 axis mediates glucocorticoid-induced cell cycle arrest in T-lymphoma cells. Cell Cycle. 2013;12(16):2625–35.

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Lim MS, et al. Expression of Skp2, a p27(Kip1) ubiquitin ligase, in malignant lymphoma: correlation with p27(Kip1) and proliferation index. Blood. 2002;100(8):2950–6.

    PubMed  CAS  Google Scholar 

  10. Schuler S, et al. SKP2 confers resistance of pancreatic cancer cells towards TRAIL-induced apoptosis. Int J Oncol. 2011;38(1):219–25.

    PubMed  Google Scholar 

  11. Hulit J, et al. p27Kip1 repression of ErbB2-induced mammary tumor growth in transgenic mice involves Skp2 and Wnt/beta-catenin signaling. Cancer Res. 2006;66(17):8529–41.

    PubMed  CAS  Google Scholar 

  12. Fujita T, et al. Dissection of the APCCdh1-Skp2 cascade in breast cancer. Clin Cancer Res. 2008;14(7):1966–75.

    PubMed  CAS  Google Scholar 

  13. Voduc D, et al. The combination of high cyclin E and Skp2 expression in breast cancer is associated with a poor prognosis and the basal phenotype. Hum Pathol. 2008;39(10):1431–7.

    PubMed  CAS  Google Scholar 

  14. Liu J, et al. Cytoplasmic Skp2 expression is associated with p-Akt1 and predicts poor prognosis in human breast carcinomas. PLoS One. 2012;7(12):e52675.

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Wei S, et al. Targeting the oncogenic E3 ligase Skp2 in prostate and breast cancer cells with a novel energy restriction-mimetic agent. PLoS One. 2012;7(10):e47298.

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Zhao H, et al. Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors. Cancer Cell. 2013;24(5):645–59.

    PubMed  CAS  Google Scholar 

  17. Benevenuto-de-Andrade BA, et al. Immunohistochemical expression of Skp2 protein in oral nevi and melanoma. Med Oral Patol Oral Cir Bucal. 2013;18(3):e388–91.

    PubMed Central  PubMed  Google Scholar 

  18. Qu X, et al. A signal transduction pathway from TGF-beta1 to SKP2 via Akt1 and c-Myc and its correlation with progression in human melanoma. J Invest Dermatol. 2014;134:159–67.

    PubMed  CAS  Google Scholar 

  19. Chen G, et al. Cytoplasmic Skp2 expression is increased in human melanoma and correlated with patient survival. PLoS One. 2011;6(2):e17578.

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Xu HM, et al. Correlation of Skp2 overexpression to prognosis of patients with nasopharyngeal carcinoma from South China. Chin J Cancer. 2011;30(3):204–12.

    PubMed  CAS  Google Scholar 

  21. Fang FM, et al. Effect of S-phase kinase-associated protein 2 expression on distant metastasis and survival in nasopharyngeal carcinoma patients. Int J Radiat Oncol Biol Phys. 2009;73(1):202–7.

    PubMed  CAS  Google Scholar 

  22. Masuda TA, et al. Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res. 2002;62(13):3819–25.

    PubMed  CAS  Google Scholar 

  23. Lu M, et al. The expression and prognosis of FOXO3a and Skp2 in human hepatocellular carcinoma. Pathol Oncol Res. 2009;15(4):679–87.

    PubMed  CAS  Google Scholar 

  24. Lin HK, et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature. 2010;464(7287):374–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Radke S, Pirkmaier A, Germain D. Differential expression of the F-box proteins Skp2 and Skp2B in breast cancer. Oncogene. 2005;24(21):3448–58.

    PubMed  CAS  Google Scholar 

  26. Nakayama KI, Hatakeyama S, Nakayama K. Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E and p27Kip1. Biochem Biophys Res Commun. 2001;282(4):853–60.

    PubMed  CAS  Google Scholar 

  27. Suzuki S, et al. The amelioration of renal damage in Skp2-deficient mice canceled by p27 Kip1 deficiency in Skp2−/− p27−/− mice. PLoS One. 2012;7(4):e36249.

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Egozi D, et al. Regulation of the cell cycle inhibitor p27 and its ubiquitin ligase Skp2 in differentiation of human embryonic stem cells. FASEB J. 2007;21(11):2807–17.

    PubMed  CAS  Google Scholar 

  29. Dombrowski C, et al. FGFR1 signaling stimulates proliferation of human mesenchymal stem cells by inhibiting the cyclin-dependent kinase inhibitors P21 and P27. Stem Cells. 2013;31:2724–36.

    Google Scholar 

  30. Kitagawa K, Kotake Y, Kitagawa M. Ubiquitin-mediated control of oncogene and tumor suppressor gene products. Cancer Sci. 2009;100(8):1374–81.

    PubMed  CAS  Google Scholar 

  31. Nakayama K, et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J. 2000;19(9):2069–81.

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Nakayama K, et al. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell. 2004;6(5):661–72.

    PubMed  CAS  Google Scholar 

  33. Carrano AC, et al. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol. 1999;1(4):193–9.

    PubMed  CAS  Google Scholar 

  34. Tsvetkov LM, et al. p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol. 1999;9(12):661–4.

    PubMed  CAS  Google Scholar 

  35. Spruck C, et al. A CDK-independent function of mammalian Cks1: targeting of SCF(Skp2) to the CDK inhibitor p27Kip1. Mol Cell. 2001;7(3):639–50.

    PubMed  CAS  Google Scholar 

  36. Ganoth D, et al. The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol. 2001;3(3):321–4.

    PubMed  CAS  Google Scholar 

  37. Yu ZK, Gervais JL, Zhang H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci U S A. 1998;95(19):11324–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Kamura T, et al. Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation. Proc Natl Acad Sci U S A. 2003;100(18):10231–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Hiramatsu Y, et al. Degradation of Tob1 mediated by SCFSkp2-dependent ubiquitination. Cancer Res. 2006;66(17):8477–83.

    PubMed  CAS  Google Scholar 

  40. Song MS, et al. Skp2 regulates the antiproliferative function of the tumor suppressor RASSF1A via ubiquitin-mediated degradation at the G1-S transition. Oncogene. 2008;27(22):3176–85.

    PubMed  CAS  Google Scholar 

  41. Bhattacharya S, et al. SKP2 associates with p130 and accelerates p130 ubiquitylation and degradation in human cells. Oncogene. 2003;22(16):2443–51.

    PubMed  CAS  Google Scholar 

  42. Huang H, et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci U S A. 2005;102(5):1649–54.

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Wang H, et al. A comparison between Skp2 and FOXO1 for their cytoplasmic localization by Akt1. Cell Cycle. 2010;9(5):1021–2.

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Xu F, et al. The oncoprotein HBXIP up-regulates Skp2 via activating transcription factor E2F1 to promote proliferation of breast cancer cells. Cancer Lett. 2013;333(1):124–32.

    PubMed  CAS  Google Scholar 

  45. Zhang L, Wang C. F-box protein Skp2: a novel transcriptional target of E2F. Oncogene. 2006;25(18):2615–27.

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Fukushima H, et al. SCF(Fbw7) modulates the NFkB signaling pathway by targeting NFkB2 for ubiquitination and destruction. Cell Rep. 2012;1(5):434–43.

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Appleman LJ, et al. CD28 costimulation mediates transcription of SKP2 and CKS1, the substrate recognition components of SCFSkp2 ubiquitin ligase that leads p27kip1 to degradation. Cell Cycle. 2006;5(18):2123–9.

    PubMed  CAS  Google Scholar 

  48. Sarmento LM, et al. Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation. J Exp Med. 2005;202(1):157–68.

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Imaki H, et al. Cell cycle-dependent regulation of the Skp2 promoter by GA-binding protein. Cancer Res. 2003;63(15):4607–13.

    PubMed  CAS  Google Scholar 

  50. Huang H, Zhao W, Yang D. Stat3 induces oncogenic Skp2 expression in human cervical carcinoma cells. Biochem Biophys Res Commun. 2012;418(1):186–90.

    PubMed  CAS  Google Scholar 

  51. Wei Z, et al. STAT3 interacts with Skp2/p27/p21 pathway to regulate the motility and invasion of gastric cancer cells. Cell Signal. 2013;25(4):931–8.

    PubMed  CAS  Google Scholar 

  52. Park TJ, et al. Skp2 enhances polyubiquitination and degradation of TIS21/BTG2/PC3, tumor suppressor protein, at the downstream of FoxM1. Exp Cell Res. 2009;315(18):3152–62.

    PubMed  CAS  Google Scholar 

  53. Zuo T, et al. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J Clin Invest. 2007;117(12):3765–73.

    PubMed Central  PubMed  CAS  Google Scholar 

  54. Zheng J, et al. Heterozygous genetic variations of FOXP3 in Xp11.23 elevate breast cancer risk in Chinese population via skewed X-chromosome inactivation. Hum Mutat. 2013;34(4):619–28.

    PubMed  CAS  Google Scholar 

  55. Bashir T, et al. Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature. 2004;428(6979):190–3.

    PubMed  CAS  Google Scholar 

  56. Kurland JF, Tansey WP. Crashing waves of destruction: the cell cycle and APC(Cdh1) regulation of SCF(Skp2). Cancer Cell. 2004;5(4):305–6.

    PubMed  CAS  Google Scholar 

  57. Wei W, et al. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature. 2004;428(6979):194–8.

    PubMed  CAS  Google Scholar 

  58. Fang Y, et al. MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology. 2012;55(6):1852–62.

    PubMed  CAS  Google Scholar 

  59. Sanchez N, et al. MiR-7 triggers cell cycle arrest at the G1/S transition by targeting multiple genes including Skp2 and Psme3. PLoS One. 2013;8(6):e65671.

    PubMed Central  PubMed  CAS  Google Scholar 

  60. Jackson SJ, et al. Rapid and widespread suppression of self-renewal by microRNA-203 during epidermal differentiation. Development. 2013;140(9):1882–91.

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Wang H, et al. An AR-Skp2 pathway for proliferation of androgen-dependent prostate-cancer cells. J Cell Sci. 2008;121(Pt 15):2578–87.

    PubMed Central  PubMed  CAS  Google Scholar 

  62. Jiang J, et al. Androgens repress expression of the F-box protein Skp2 via p107 dependent and independent mechanisms in LNCaP prostate cancer cells. Prostate. 2012;72(2):225–32.

    PubMed  CAS  Google Scholar 

  63. Pernicova Z, et al. Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. Neoplasia. 2011;13(6):526–36.

    PubMed Central  PubMed  CAS  Google Scholar 

  64. Kratzat S, et al. Cks1 is required for tumor cell proliferation but not sufficient to induce hematopoietic malignancies. PLoS One. 2012;7(5):e37433.

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Agarwal A, et al. Absence of SKP2 expression attenuates BCR-ABL-induced myeloproliferative disease. Blood. 2008;112(5):1960–70.

    PubMed Central  PubMed  CAS  Google Scholar 

  66. Minamishima YA, Nakayama K. Recovery of liver mass without proliferation of hepatocytes after partial hepatectomy in Skp2-deficient mice. Cancer Res. 2002;62(4):995–9.

    PubMed  CAS  Google Scholar 

  67. Chander H, et al. Skp2B attenuates p53 function by inhibiting prohibitin. EMBO Rep. 2010;11(3):220–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  68. Shim EH, et al. Expression of the F-box protein SKP2 induces hyperplasia, dysplasia, and low-grade carcinoma in the mouse prostate. Cancer Res. 2003;63(7):1583–8.

    PubMed  CAS  Google Scholar 

  69. Sistrunk C, et al. Skp2 deficiency inhibits chemical skin tumorigenesis independent of p27(Kip1) accumulation. Am J Pathol. 2013;182(5):1854–64.

    PubMed  CAS  Google Scholar 

  70. Koepp DM, et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science. 2001;294(5540):173–7.

    PubMed  CAS  Google Scholar 

  71. Wang H, et al. Skp2 is required for survival of aberrantly proliferating Rb1-deficient cells and for tumorigenesis in Rb1+/− mice. Nat Genet. 2010;42(1):83–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  72. Pagano M. Control of DNA synthesis and mitosis by the Skp2-p27-Cdk1/2 axis. Mol Cell. 2004;14(4):414–6.

    PubMed  CAS  Google Scholar 

  73. Rico-Bautista E, Wolf DA. Skipping cancer: small molecule inhibitors of SKP2-mediated p27 degradation. Chem Biol. 2012;19(12):1497–8.

    PubMed  CAS  Google Scholar 

  74. Chen Q, et al. Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood. 2008;111(9):4690–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Rico-Bautista E, et al. Chemical genetics approach to restoring p27Kip1 reveals novel compounds with antiproliferative activity in prostate cancer cells. BMC Biol. 2010;8:153.

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Wu L, et al. Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem Biol. 2012;19(12):1515–24.

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Ju Y, et al. Glucosamine, a naturally occurring amino monosaccharide, inhibits A549 and H446 cell proliferation by blocking G1/S transition. Mol Med Rep. 2013;8(3):794–8.

    PubMed  CAS  Google Scholar 

  78. Koo KH, et al. Salinomycin induces cell death via inactivation of Stat3 and downregulation of Skp2. Cell Death Dis. 2013;4:e693.

    PubMed Central  PubMed  CAS  Google Scholar 

  79. Chan CH, et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell. 2013;154(3):556–68.

    PubMed  CAS  Google Scholar 

  80. Chan CH, et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell. 2012;149(5):1098–111.

    PubMed Central  PubMed  CAS  Google Scholar 

  81. Godinho SI, et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science. 2007;316(5826):897–900.

    PubMed  CAS  Google Scholar 

  82. Siepka SM, et al. Circadian mutant overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell. 2007;129(5):1011–23.

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Vashisht AA, et al. Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science. 2009;326(5953):718–21.

    PubMed Central  PubMed  CAS  Google Scholar 

  84. Busino L, et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science. 2007;316(5826):900–4.

    PubMed  CAS  Google Scholar 

  85. Xing W, et al. SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature. 2013;496(7443):64–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Tong X, et al. USP2a protein deubiquitinates and stabilizes the circadian protein CRY1 in response to inflammatory signals. J Biol Chem. 2012;287(30):25280–91.

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Shi G, et al. Dual roles of FBXL3 in the mammalian circadian feedback loops are important for period determination and robustness of the clock. Proc Natl Acad Sci U S A. 2013;110(12):4750–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Ahn YM, et al. Chronotype distribution in bipolar I disorder and schizophrenia in a Korean sample. Bipolar Disord. 2008;10(2):271–5.

    PubMed  Google Scholar 

  89. Mansour HA, et al. Circadian phase variation in bipolar I disorder. Chronobiol Int. 2005;22(3):571–84.

    PubMed  Google Scholar 

  90. McClung CA. Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther. 2007;114(2):222–32.

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Wood J, et al. Replicable differences in preferred circadian phase between bipolar disorder patients and control individuals. Psychiatry Res. 2009;166(2–3):201–9.

    PubMed Central  PubMed  Google Scholar 

  92. Keers R, et al. Reduced anxiety and depression-like behaviours in the circadian period mutant mouse afterhours. PLoS One. 2012;7(6):e38263.

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Williams DS, et al. Nonsense mediated decay resistant mutations are a source of expressed mutant proteins in colon cancer cell lines with microsatellite instability. PLoS One. 2010;5(12):e16012.

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Luo Y, et al. Deregulated expression of cry1 and cry2 in human gliomas. Asian Pac J Cancer Prev. 2012;13(11):5725–8.

    PubMed  Google Scholar 

  95. Savvidis C, Koutsilieris M. Circadian rhythm disruption in cancer biology. Mol Med. 2012;18:1249–60.

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Fu L, et al. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell. 2002;111(1):41–50.

    PubMed  CAS  Google Scholar 

  97. Gery S, et al. The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell. 2006;22(3):375–82.

    PubMed  CAS  Google Scholar 

  98. Schmutz I, et al. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 2010;24(4):345–57.

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Filipski E, et al. Effects of chronic jet lag on tumor progression in mice. Cancer Res. 2004;64(21):7879–85.

    PubMed  CAS  Google Scholar 

  100. Kelleher FC, Rao A, Maguire A. Circadian molecular clocks and cancer. Cancer Lett. 2014;342(1):9–18.

    PubMed  CAS  Google Scholar 

  101. Ozturk N, et al. Loss of cryptochrome reduces cancer risk in p53 mutant mice. Proc Natl Acad Sci U S A. 2009;106(8):2841–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  102. Unsal-Kacmaz K, et al. Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol. 2005;25(8):3109–16.

    PubMed Central  PubMed  Google Scholar 

  103. Tsukada Y, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439(7078):811–6.

    PubMed  CAS  Google Scholar 

  104. Wu X, Johansen JV, Helin K. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol Cell. 2013;49(6):1134–46.

    PubMed  CAS  Google Scholar 

  105. Gearhart MD, et al. Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol Cell Biol. 2006;26(18):6880–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Sanchez C, et al. Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor. Mol Cell Proteomics. 2007;6(5):820–34.

    PubMed  CAS  Google Scholar 

  107. Huynh KD, et al. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev. 2000;14(14):1810–23.

    PubMed Central  PubMed  CAS  Google Scholar 

  108. Frescas D, et al. JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature. 2007;450(7167):309–13.

    PubMed  CAS  Google Scholar 

  109. Tzatsos A, et al. KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs. J Clin Invest. 2013;123(2):727–39.

    PubMed Central  PubMed  CAS  Google Scholar 

  110. Yao I, et al. SCRAPPER-dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release. Cell. 2007;130(5):943–57.

    PubMed Central  PubMed  CAS  Google Scholar 

  111. Yao I, et al. Synaptic E3 ligase SCRAPPER in contextual fear conditioning: extensive behavioral phenotyping of Scrapper heterozygote and overexpressing mutant mice. PLoS One. 2011;6(2):e17317.

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Takagi H, et al. SCRAPPER regulates the thresholds of long-term potentiation/depression, the bidirectional synaptic plasticity in hippocampal CA3-CA1 synapses. Neural Plast. 2012;2012:352829.

    PubMed Central  PubMed  Google Scholar 

  113. Chasman DI, et al. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function. Hum Mol Genet. 2012;21(24):5329–43.

    PubMed Central  PubMed  CAS  Google Scholar 

  114. Zhu J, et al. Role of FBXL20 in human colorectal adenocarcinoma. Oncol Rep. 2012;28(6):2290–8.

    PubMed  CAS  Google Scholar 

  115. Eisfeld AK, et al. miR-3151 interplays with its host gene BAALC and independently affects outcome of patients with cytogenetically normal acute myeloid leukemia. Blood. 2012;120(2):249–58.

    PubMed Central  PubMed  CAS  Google Scholar 

  116. Yoo SH, et al. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell. 2013;152(5):1091–105.

    PubMed Central  PubMed  CAS  Google Scholar 

  117. Hirano A, et al. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell. 2013;152(5):1106–18.

    PubMed  CAS  Google Scholar 

  118. Dardente H, et al. Implication of the F-Box Protein FBXL21 in circadian pacemaker function in mammals. PLoS One. 2008;3(10):e3530.

    PubMed Central  PubMed  Google Scholar 

  119. Chen X, et al. FBXL21 association with schizophrenia in Irish family and case-control samples. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(7):1231–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  120. Kossatz U, et al. Skp2-dependent degradation of p27kip1 is essential for cell cycle progression. Genes Dev. 2004;18(21):2602–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  121. Latres E, et al. Role of the F-box protein Skp2 in lymphomagenesis. Proc Natl Acad Sci U S A. 2001;98(5):2515–20.

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Gstaiger M, et al. Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci U S A. 2001;98(9):5043–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  123. Yokoi S, et al. Amplification and overexpression of SKP2 are associated with metastasis of non-small-cell lung cancers to lymph nodes. Am J Pathol. 2004;165(1):175–80.

    PubMed Central  PubMed  CAS  Google Scholar 

  124. Chiaur DS, et al. Five human genes encoding F-box proteins: chromosome mapping and analysis in human tumors. Cytogenet Cell Genet. 2000;88(3–4):255–8.

    PubMed  CAS  Google Scholar 

  125. Fukuda T, et al. Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly. Mol Cell Neurosci. 2011;46(3):614–24.

    PubMed  CAS  Google Scholar 

  126. Suzuki S, et al. Renal damage in obstructive nephropathy is decreased in Skp2-deficient mice. Am J Pathol. 2007;171(2):473–83.

    PubMed Central  PubMed  CAS  Google Scholar 

  127. Fotovati A, et al. Impaired ovarian development and reduced fertility in female mice deficient in Skp2. J Anat. 2011;218(6):668–77.

    PubMed Central  PubMed  CAS  Google Scholar 

  128. Wu YJ, et al. S-phase kinase-associated protein-2 (Skp2) promotes vascular smooth muscle cell proliferation and neointima formation in vivo. J Vasc Surg. 2009;50(5):1135–42.

    PubMed Central  PubMed  Google Scholar 

  129. Zhong L, et al. Essential role of Skp2-mediated p27 degradation in growth and adaptive expansion of pancreatic beta cells. J Clin Invest. 2007;117(10):2869–76.

    PubMed Central  PubMed  CAS  Google Scholar 

  130. Sakai T, et al. Skp2 controls adipocyte proliferation during the development of obesity. J Biol Chem. 2007;282(3):2038–46.

    PubMed  CAS  Google Scholar 

  131. Fotovati A, Nakayama K, Nakayama KI. Impaired germ cell development due to compromised cell cycle progression in Skp2-deficient mice. Cell Div. 2006;1:4.

    PubMed Central  PubMed  Google Scholar 

  132. Wang J, et al. The role of Skp2 in hematopoietic stem cell quiescence, pool size, and self-renewal. Blood. 2011;118(20):5429–38.

    PubMed Central  PubMed  Google Scholar 

  133. Umanskaya K, et al. Skp2B stimulates mammary gland development by inhibiting REA, the repressor of the estrogen receptor. Mol Cell Biol. 2007;27(21):7615–22.

    PubMed Central  PubMed  CAS  Google Scholar 

  134. Sistrunk C, et al. Skp2 is necessary for Myc-induced keratinocyte proliferation but dispensable for Myc oncogenic activity in the oral epithelium. Am J Pathol. 2011;178(6):2470–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  135. Watanabe T, et al. FBL2 regulates amyloid precursor protein (APP) metabolism by promoting ubiquitination-dependent APP degradation and inhibition of APP endocytosis. J Neurosci. 2012;32(10):3352–65.

    PubMed  CAS  Google Scholar 

  136. Nie L, et al. Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. EMBO J. 2003;22(21):5780–92.

    PubMed Central  PubMed  CAS  Google Scholar 

  137. Vaites LP, et al. The Fbx4 tumor suppressor regulates cyclin D1 accumulation and prevents neoplastic transformation. Mol Cell Biol. 2011;31(22):4513–23.

    PubMed Central  PubMed  CAS  Google Scholar 

  138. Hardisty-Hughes RE, et al. A mutation in the F-box gene, Fbxo11, causes otitis media in the Jeff mouse. Hum Mol Genet. 2006;15(22):3273–9.

    PubMed  CAS  Google Scholar 

  139. Tetzlaff MT, et al. Cyclin F disruption compromises placental development and affects normal cell cycle execution. Mol Cell Biol. 2004;24(6):2487–98.

    PubMed Central  PubMed  CAS  Google Scholar 

  140. Lee TH, et al. The F-box protein FBX4 targets PIN2/TRF1 for ubiquitin-mediated degradation and regulates telomere maintenance. J Biol Chem. 2006;281(2):759–68.

    PubMed  CAS  Google Scholar 

  141. Ruiz JC, et al. F-box and leucine-rich repeat protein 5 (FBXL5) is required for maintenance of cellular and systemic iron homeostasis. J Biol Chem. 2013;288(1):552–60.

    PubMed Central  PubMed  CAS  Google Scholar 

  142. Nelson RF, et al. Selective cochlear degeneration in mice lacking the F-box protein, Fbx2, a glycoprotein-specific ubiquitin ligase subunit. J Neurosci. 2007;27(19):5163–71.

    PubMed  CAS  Google Scholar 

  143. Tokuzawa Y, et al. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol. 2003;23(8):2699–708.

    PubMed Central  PubMed  CAS  Google Scholar 

  144. Saiga T, et al. Fbxo45 forms a novel ubiquitin ligase complex and is required for neuronal development. Mol Cell Biol. 2009;29(13):3529–43.

    PubMed Central  PubMed  CAS  Google Scholar 

  145. D’Angiolella V, et al. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell. 2012;149(5):1023–34.

    PubMed Central  PubMed  Google Scholar 

  146. Yoshida Y, et al. E3 ubiquitin ligase that recognizes sugar chains. Nature. 2002;418(6896):438–42.

    PubMed  CAS  Google Scholar 

  147. Murai-Takebe R, et al. Ubiquitination-mediated regulation of biosynthesis of the adhesion receptor SHPS-1 in response to endoplasmic reticulum stress. J Biol Chem. 2004;279(12):11616–25.

    PubMed  CAS  Google Scholar 

  148. Kato A, et al. Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination. Proc Natl Acad Sci U S A. 2005;102(15):5600–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  149. Henzl MT, et al. The cochlear F-box protein OCP1 associates with OCP2 and connexin 26. Hear Res. 2004;191(1–2):101–9.

    PubMed  CAS  Google Scholar 

  150. Liu B, et al. Proteomic identification of common SCF ubiquitin ligase FBXO6-interacting glycoproteins in three kinds of cells. J Proteome Res. 2012;11(3):1773–81.

    PubMed  CAS  Google Scholar 

  151. Shima Y, et al. PML activates transcription by protecting HIPK2 and p300 from SCFFbx3-mediated degradation. Mol Cell Biol. 2008;28(23):7126–38.

    PubMed Central  PubMed  CAS  Google Scholar 

  152. Jia L, Sun Y. F-box proteins FBXO31 and FBX4 in regulation of cyclin D1 degradation upon DNA damage. Pigment Cell Melanoma Res. 2009;22(5):518–9.

    PubMed Central  PubMed  Google Scholar 

  153. Lin DI, et al. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex. Mol Cell. 2006;24(3):355–66.

    PubMed Central  PubMed  CAS  Google Scholar 

  154. Santra MK, Wajapeyee N, Green MR. F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature. 2009;459(7247):722–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  155. Yoshida Y, et al. Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J Biol Chem. 2003;278(44):43877–84.

    PubMed  CAS  Google Scholar 

  156. Zhang YW, et al. The F box protein Fbx6 regulates Chk1 stability and cellular sensitivity to replication stress. Mol Cell. 2009;35(4):442–53.

    PubMed Central  PubMed  Google Scholar 

  157. Merry C, et al. Targeting the checkpoint kinase Chk1 in cancer therapy. Cell Cycle. 2010;9(2):279–83.

    PubMed Central  PubMed  CAS  Google Scholar 

  158. Agrawal N, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333(6046):1154–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  159. Arabi A, et al. Proteomic screen reveals Fbw7 as a modulator of the NF-kappaB pathway. Nat Commun. 2012;3:976.

    PubMed  Google Scholar 

  160. Balamurugan K, et al. FBXW7alpha attenuates inflammatory signalling by downregulating C/EBPdelta and its target gene Tlr4. Nat Commun. 2013;4:1662.

    PubMed Central  PubMed  Google Scholar 

  161. Seki A, et al. Plk1- and beta-TrCP-dependent degradation of Bora controls mitotic progression. J Cell Biol. 2008;181(1):65–78.

    PubMed Central  PubMed  CAS  Google Scholar 

  162. Kuchay S, et al. FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade. Nat Cell Biol. 2013;15(5):472–80.

    PubMed  CAS  Google Scholar 

  163. Chen BB, et al. F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation. Blood. 2012;119(13):3132–41.

    PubMed Central  PubMed  CAS  Google Scholar 

  164. Chen BB, et al. FBXL2 is a ubiquitin E3 ligase subunit that triggers mitotic arrest. Cell Cycle. 2011;10(20):3487–94.

    PubMed Central  PubMed  CAS  Google Scholar 

  165. Chen BB, et al. F-box protein FBXL2 exerts human lung tumor suppressor-like activity by ubiquitin-mediated degradation of cyclin D3 resulting in cell cycle arrest. Oncogene. 2012;31(20):2566–79.

    PubMed Central  PubMed  CAS  Google Scholar 

  166. Maywood ES, et al. Genetic and molecular analysis of the central and peripheral circadian clockwork of mice. Cold Spring Harb Symp Quant Biol. 2007;72:85–94.

    PubMed  CAS  Google Scholar 

  167. Van Rechem C, et al. The SKP1-Cul1-F-box and leucine-rich repeat protein 4 (SCF-FbxL4) ubiquitin ligase regulates lysine demethylase 4A (KDM4A)/Jumonji domain-containing 2A (JMJD2A) protein. J Biol Chem. 2011;286(35):30462–70.

    PubMed Central  PubMed  Google Scholar 

  168. Salahudeen AA, et al. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science. 2009;326(5953):722–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  169. Coon TA, et al. Novel E3 ligase component FBXL7 ubiquitinates and degrades Aurora A, causing mitotic arrest. Cell Cycle. 2012;11(4):721–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  170. Postow L, Funabiki H. An SCF complex containing Fbxl12 mediates DNA damage-induced Ku80 ubiquitylation. Cell Cycle. 2013;12(4):587–95.

    PubMed Central  PubMed  CAS  Google Scholar 

  171. Mallampalli RK, et al. Fbxl12 triggers G1 arrest by mediating degradation of calmodulin kinase I. Cell Signal. 2013;25(10):2047–59.

    PubMed  CAS  Google Scholar 

  172. Vinas-Castells R, et al. The hypoxia-controlled FBXL14 ubiquitin ligase targets SNAIL1 for proteasome degradation. J Biol Chem. 2010;285(6):3794–805.

    PubMed Central  PubMed  CAS  Google Scholar 

  173. Vernon AE, LaBonne C. Slug stability is dynamically regulated during neural crest development by the F-box protein Ppa. Development. 2006;133(17):3359–70.

    PubMed  CAS  Google Scholar 

  174. Zheng H, et al. Essential role of Fbxl14 ubiquitin ligase in regulation of vertebrate axis formation through modulating Mkp3 level. Cell Res. 2012;22(5):936–40.

    PubMed Central  PubMed  CAS  Google Scholar 

  175. Lander R, Nordin K, LaBonne C. The F-box protein Ppa is a common regulator of core EMT factors Twist, Snail, Slug, and Sip1. J Cell Biol. 2011;194(1):17–25.

    PubMed Central  PubMed  CAS  Google Scholar 

  176. Cui Y, et al. SCFFBXL(1)(5) regulates BMP signalling by directing the degradation of HECT-type ubiquitin ligase Smurf1. EMBO J. 2011;30(13):2675–89.

    PubMed Central  PubMed  CAS  Google Scholar 

  177. Zhao J, et al. F-box protein FBXL19-mediated ubiquitination and degradation of the receptor for IL-33 limits pulmonary inflammation. Nat Immunol. 2012;13(7):651–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  178. Zhao J, et al. SCF E3 ligase F-box protein complex SCFFBXL19 regulates cell migration by mediating Rac1 ubiquitination and degradation. FASEB J. 2013;27(7):2611–9.

    PubMed  CAS  Google Scholar 

  179. Wei J, et al. A new mechanism of RhoA ubiquitination and degradation: roles of SCF E3 ligase and Erk2. Biochim Biophys Acta. 2013;1833(12):2757–64.

    PubMed  CAS  Google Scholar 

  180. Spaich S, et al. F-box and leucine-rich repeat protein 22 is a cardiac-enriched F-box protein that regulates sarcomeric protein turnover and is essential for maintenance of contractile function in vivo. Circ Res. 2012;111(12):1504–16.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyi Wei .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

North, B.J., Liu, Y., Inuzuka, H., Wei, W. (2014). The Role of FBXL Subfamily of F-box Proteins in Tumorigenesis. In: SCF and APC E3 Ubiquitin Ligases in Tumorigenesis. SpringerBriefs in Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-05026-3_3

Download citation

Publish with us

Policies and ethics