Skip to main content

Part of the book series: SpringerBriefs in Cancer Research ((BRIEFSCANCER))

  • 686 Accesses

Abstract

Cancer, medically termed as malignant neoplasm, is characterized by uncontrolled cell division and growth, resulting from genome instability or dysregulated responses to physiological cues that regulate normal cellular processes including proliferation, survival, and differentiation. Intensive investigations over the past decades have demonstrated that cancer can be considered largely a genetic disease, and typically multiple genetic alteration events are required in order for primary cells to become malignant, including loss of tumor suppressor functions combined with gain of oncoprotein functions (Fukasawa, Nat Rev Cancer 7(12):911–924, 2007; Crusio et al., Oncogene 29(35):4865–4873, 2010).

Recently, there has been a wealth of literature demonstrating that F-box proteins, complexed with other essential components (Skp1 and Cullin) to form SCF-type of E3 ubiquitin ligase complexes, play a pivotal role in the development and progression of human malignancies (Nakayama and Nakayama, Nat Rev Cancer 6(5):369–381, 2006; Welcker and Clurman, Nat Rev Cancer 8(2):83–93, 2008). Mechanistically, mounting evidence supports the notion that F-box proteins are involved in governing multiple cellular processes including cell proliferation, apoptosis, invasion, angiogenesis, and metastasis (Cardozo and Pagano, Nat Rev Mol Cell Biol 5(9):739–751, 2004). With many excellent studies in recent years regarding how F-box proteins contribute to human diseases such as cancer (Nakayama and Nakayama, Nat Rev Cancer 6(5):369–381, 2006; Welcker and Clurman, Nat Rev Cancer 8(2):83–93, 2008), now is a pertinent time to review our current understanding of how F-box proteins, including the well-established Fbw7, Skp2, and β-TRCP, are involved in tumorigenesis by controlling cell growth and apoptosis, regulation of invasion and metastasis, display of stem cell features, and establishment of drug resistance. Moreover, we also review the underlying mechanisms by which F-box proteins are regulated, and how these pathways when disrupted can promote tumorigenesis.

In addition to SCF ubiquitin ligases, the Anaphase Promoting Complex/Cyclosome (APC/C, also called APC) is also a major ubiquitin ligase, which is a driving force in governing proper cell cycle progression, especially regulating timely transitions during mitosis, and entry into S phase (Peters, Nat Rev Mol Cell Biol 7(9):644–656, 2006). The APC consists of a core holoenzyme and an adaptor protein, either Cdh1 or Cdc20. Recent genetic and biochemical studies revealed that APCCdc20 as a putative oncoprotein (Li et al., Mol Cell Biol 27(9):3481–3488, 2007; Manchado et al., Cancer Cell 18(6):641–654, 2010; Yin et al. Cell Cycle 6(23):2990–2992, 2007) while APCCdh1 likely functions as a tumor suppressor (Garcia-Higuera et al. Nat Cell Biol 10(7):802–811, 2008; Li et al. Nat Cell Biol 10(9):1083–1089, 2008), yet the underlying molecular mechanisms by which these two lases exert their effects on tumorigenesis remain largely undefined. Moreover, studies from various groups have revealed an intensive crosstalk between the APC and SCF E3 ligase complexes in coordinating the timely cell cycle transitions. Hence, it is critical to summarize recent advances in our genetic and biochemical understanding of how various APC and SCF complexes and their regulators function in tumorigenesis, which will be useful in guiding the development of specific inhibitors targeting ubiquitin ligase function as novel anticancer treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crusio KM, et al. The ubiquitous nature of cancer: the role of the SCF(Fbw7) complex in development and transformation. Oncogene. 2010;29(35):4865–73.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 2006;6(5):369–81.

    Article  PubMed  CAS  Google Scholar 

  3. Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer. 2008;8(2):83–93.

    Article  PubMed  CAS  Google Scholar 

  4. Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol. 2004;5(9):739–51.

    Article  PubMed  CAS  Google Scholar 

  5. Peters JM. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol. 2006;7(9):644–56.

    Article  PubMed  CAS  Google Scholar 

  6. Li M, York JP, Zhang P. Loss of Cdc20 causes a securin-dependent metaphase arrest in two-cell mouse embryos. Mol Cell Biol. 2007;27(9):3481–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Manchado E, et al. Targeting mitotic exit leads to tumor regression in vivo: modulation by Cdk1, Mastl, and the PP2A/B55alpha, delta phosphatase. Cancer Cell. 2010;18(6):641–54.

    Article  PubMed  CAS  Google Scholar 

  8. Yin S, et al. Cdc20 is required for the anaphase onset of the first meiosis but not the second meiosis in mouse oocytes. Cell Cycle. 2007;6(23):2990–2.

    Article  PubMed  CAS  Google Scholar 

  9. Garcia-Higuera I, et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nat Cell Biol. 2008;10(7):802–11.

    Article  PubMed  Google Scholar 

  10. Li M, et al. The adaptor protein of the anaphase promoting complex Cdh1 is essential in maintaining replicative lifespan and in learning and memory. Nat Cell Biol. 2008;10(9):1083–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66.

    Article  PubMed  CAS  Google Scholar 

  12. Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators and beyond. Dev Cell. 2008;14(2):159–69.

    Article  PubMed  CAS  Google Scholar 

  13. Resnitzky D, et al. Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol. 1994;14(3):1669–79.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Nishimoto T, Uzawa S, Schlegel R. Mitotic checkpoints. Curr Opin Cell Biol. 1992;4(2):174–9.

    Article  PubMed  CAS  Google Scholar 

  15. Wolowiec D, Ffrench M. Cyclins A and B: redundancy and specificity. Pathol Biol (Paris). 1993;41(6):547–53.

    CAS  Google Scholar 

  16. Morgan DO. Principles of CDK regulation. Nature. 1995;374(6518):131–4.

    Article  PubMed  CAS  Google Scholar 

  17. Olashaw N, Pledger WJ. Paradigms of growth control: relation to Cdk activation. Sci STKE. 2002;2002(134):re7.

    PubMed  Google Scholar 

  18. Dai Y, Grant S. Cyclin-dependent kinase inhibitors. Curr Opin Pharmacol. 2003;3(4):362–70.

    Article  PubMed  CAS  Google Scholar 

  19. Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012;81:203–29.

    Article  PubMed  CAS  Google Scholar 

  20. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–79.

    Article  PubMed  CAS  Google Scholar 

  21. Varshavsky A. The ubiquitin system, an immense realm. Annu Rev Biochem. 2012;81:167–76.

    Article  PubMed  CAS  Google Scholar 

  22. Eldridge AG, O’Brien T. Therapeutic strategies within the ubiquitin proteasome system. Cell Death Differ. 2010;17(1):4–13.

    Article  PubMed  CAS  Google Scholar 

  23. Hoeller D, Dikic I. Targeting the ubiquitin system in cancer therapy. Nature. 2009;458(7237):438–44.

    Article  PubMed  CAS  Google Scholar 

  24. Nalepa G, Rolfe M, Harper JW. Drug discovery in the ubiquitin-proteasome system. Nat Rev Drug Discov. 2006;5(7):596–613.

    PubMed  CAS  Google Scholar 

  25. Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001;70:503–33.

    Article  PubMed  CAS  Google Scholar 

  26. Kulathu Y, Komander D. Atypical ubiquitylation—the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol. 2012;13(8):508–23.

    Article  PubMed  CAS  Google Scholar 

  27. Baboshina OV, Haas AL. Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5. J Biol Chem. 1996;271(5):2823–31.

    Article  PubMed  CAS  Google Scholar 

  28. Schwarz LA, Patrick GN. Ubiquitin-dependent endocytosis, trafficking and turnover of neuronal membrane proteins. Mol Cell Neurosci. 2012;49(3):387–93.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Ulrich HD, Walden H. Ubiquitin signalling in DNA replication and repair. Nat Rev Mol Cell Biol. 2010;11(7):479–89.

    Article  PubMed  CAS  Google Scholar 

  30. Acconcia F, Sigismund S, Polo S. Ubiquitin in trafficking: the network at work. Exp Cell Res. 2009;315(9):1610–8.

    Article  PubMed  CAS  Google Scholar 

  31. Clague MJ, Coulson JM, Urbe S. Cellular functions of the DUBs. J Cell Sci. 2012;125(Pt 2):277–86.

    Article  PubMed  CAS  Google Scholar 

  32. Burrows JF, Johnston JA. Regulation of cellular responses by deubiquitinating enzymes: an update. Front Biosci. 2012;17:1184–200.

    Article  CAS  Google Scholar 

  33. Fraile JM, et al. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene. 2012;31(19):2373–88.

    Article  PubMed  CAS  Google Scholar 

  34. DeSalle LM, Pagano M. Regulation of the G1 to S transition by the ubiquitin pathway. FEBS Lett. 2001;490(3):179–89.

    Article  PubMed  CAS  Google Scholar 

  35. Li W, et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS One. 2008;3(1):e1487.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bedford L, et al. Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov. 2011;10(1):29–46.

    PubMed  CAS  Google Scholar 

  37. Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem. 2009;78:399–434.

    Article  PubMed  CAS  Google Scholar 

  38. Petroski MD, Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 2005;6(1):9–20.

    Article  PubMed  CAS  Google Scholar 

  39. Skaar JR, Pagano M. Control of cell growth by the SCF and APC/C ubiquitin ligases. Curr Opin Cell Biol. 2009;21(6):816–24.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol. 2009;10(6):398–409.

    Article  PubMed  CAS  Google Scholar 

  41. Metzger MB, Hristova VA, Weissman AM. HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci. 2012;125(Pt 3):531–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Hua Z, Vierstra RD. The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol. 2011;62:299–334.

    Article  PubMed  CAS  Google Scholar 

  43. Sarikas A, Hartmann T, Pan ZQ. The cullin protein family. Genome Biol. 2011;12(4):220.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Duda DM, et al. Structural regulation of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol. 2011;21(2):257–64.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer. 2008;8(6):438–49.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Zheng N, et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 2002;416(6882):703–9.

    Article  PubMed  CAS  Google Scholar 

  47. Bai C, et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell. 1996;86(2):263–74.

    Article  PubMed  CAS  Google Scholar 

  48. Lipkowitz S, Weissman AM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer. 2011;11(9):629–43.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. McLean JR, et al. State of the APC/C: organization, function, and structure. Crit Rev Biochem Mol Biol. 2011;46(2):118–36.

    Article  PubMed  CAS  Google Scholar 

  50. Schreiber A, et al. Structural basis for the subunit assembly of the anaphase-promoting complex. Nature. 2011;470(7333):227–32.

    Article  PubMed  CAS  Google Scholar 

  51. da Fonseca PC, et al. Structures of APC/C(Cdh1) with substrates identify Cdh1 and Apc10 as the D-box co-receptor. Nature. 2011;470(7333):274–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Buschhorn BA, et al. Substrate binding on the APC/C occurs between the coactivator Cdh1 and the processivity factor Doc1. Nat Struct Mol Biol. 2011;18(1):6–13.

    Article  PubMed  CAS  Google Scholar 

  53. Jin L, et al. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell. 2008;133(4):653–65.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Glotzer M, Murray AW, Kirschner MW. Cyclin is degraded by the ubiquitin pathway. Nature. 1991;349(6305):132–8.

    Article  PubMed  CAS  Google Scholar 

  55. Pfleger CM, Kirschner MW. The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev. 2000;14(6):655–65.

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Castro A, et al. The D-Box-activating domain (DAD) is a new proteolysis signal that stimulates the silent D-Box sequence of Aurora-A. EMBO Rep. 2002;3(12):1209–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Littlepage LE, Ruderman JV. Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit. Genes Dev. 2002;16(17):2274–85.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Araki M, et al. Degradation of origin recognition complex large subunit by the anaphase-promoting complex in Drosophila. EMBO J. 2003;22(22):6115–26.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Reis A, et al. The CRY box: a second APCcdh1-dependent degron in mammalian cdc20. EMBO Rep. 2006;7(10):1040–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Castro A, et al. Xkid is degraded in a D-box, KEN-box, and A-box-independent pathway. Mol Cell Biol. 2003;23(12):4126–38.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Skaar JR, Pagan JK, Pagano M. Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol. 2013;14(6):369–81.

    Article  PubMed  CAS  Google Scholar 

  62. Hao B, et al. Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell. 2007;26(1):131–43.

    Article  PubMed  CAS  Google Scholar 

  63. Yoshida Y, et al. E3 ubiquitin ligase that recognizes sugar chains. Nature. 2002;418(6896):438–42.

    Article  PubMed  CAS  Google Scholar 

  64. D’Angiolella V, et al. SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature. 2010;466(7302):138–42.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Margottin-Goguet F, et al. Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev Cell. 2003;4(6):813–26.

    Article  PubMed  CAS  Google Scholar 

  66. Guardavaccaro D, et al. Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell. 2003;4(6):799–812.

    Article  PubMed  CAS  Google Scholar 

  67. Fukushima H, et al. SCF-mediated Cdh1 degradation defines a negative feedback system that coordinates cell-cycle progression. Cell Rep. 2013;4(4):803–16.

    Article  PubMed  CAS  Google Scholar 

  68. Lukas C, et al. Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature. 1999;401(6755):815–8.

    Article  PubMed  CAS  Google Scholar 

  69. Sorensen CS, et al. A conserved cyclin-binding domain determines functional interplay between anaphase-promoting complex-Cdh1 and cyclin A-Cdk2 during cell cycle progression. Mol Cell Biol. 2001;21(11):3692–703.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Wei W, et al. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature. 2004;428(6979):194–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroyuki Inuzuka or Wenyi Wei .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Liu, P., Inuzuka, H., Wei, W. (2014). Introduction. In: SCF and APC E3 Ubiquitin Ligases in Tumorigenesis. SpringerBriefs in Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-05026-3_1

Download citation

Publish with us

Policies and ethics