Skip to main content

MicroRNAs, Diet and Cancer Chemoprevention

  • Chapter
  • First Online:
MicroRNAs: Key Regulators of Oncogenesis
  • 1263 Accesses

Abstract

A growing body of clinical and epidemiological evidence suggests that diet is one of the most important modifiable determinants for risk of developing cancer and contributes to differences in cancer incidence among various populations. Experimental evidence supports the role of dietary components as chemopreventive agents in various cancers. Dietary factors potentially influence fundamental cellular processes involved in carcinogenesis; including apoptosis, cell-cycle control, angiogenesis, inflammation and DNA repair. Since microRNAs (miRNA) have emerged as critical gene/protein regulators that control basic cellular processes, there is much interest in determining the effect of dietary agents on modulation of miRNAs and their cognate targets in cancer. It has been proposed that dietary modulation of miRNA expression may contribute to the cancer-protective effects of dietary components. During the last few years, a plethora of studies have examined the effect of dietary agents on miRNAs and their targets in the context of cancer biology which suggest that dietary factors play an important role in carcinogenesis via modulation of miRNAs. In this chapter, we will summarize findings from these studies and will discuss their potential utility for cancer chemoprevention and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23(1A):363–398

    CAS  PubMed  Google Scholar 

  • Ahmad N, Mukhtar H (1999) Green tea polyphenols and cancer: biologic mechanisms and practical implications. Nutr Rev 57(3):78–83

    CAS  PubMed  Google Scholar 

  • Ahmad A, Biersack B, Li Y, Kong D, Bao B, Schobert R et al (2013) Targeted regulation of PI3K/Akt/mTOR/NF-kappaB signaling by indole compounds and their derivatives: mechanistic details and biological implications for cancer therapy. Anti-cancer Agents Med Chem 13(7):1002–1013

    CAS  Google Scholar 

  • Ali S, Ahmad A, Aboukameel A, Bao B, Padhye S, Philip PA et al (2012) Increased Ras GTPase activity is regulated by miRNAs that can be attenuated by CDF treatment in pancreatic cancer cells. Cancer Lett 319(2):173–181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Altieri DC, Languino LR, Lian JB, Stein JL, Leav I, van Wijnen AJ et al (2009) Prostate cancer regulatory networks. J Cell Biochem 107(5):845–852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alvarez J, Wasse H, Tangpricha V (2012) Vitamin D supplementation in pre-dialysis chronic kidney disease: a systematic review. Dermato-Endocrinol 4(2):118–127

    CAS  Google Scholar 

  • Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS et al (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25(9):2097–2116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arts IC, Hollman PC (2005) Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 81(1 Suppl):317S–325S

    CAS  PubMed  Google Scholar 

  • Ashendel CL (1995) Diet, signal transduction and carcinogenesis. J Nutr 125(3 Suppl):686S–691S

    CAS  PubMed  Google Scholar 

  • Babashah S, Soleimani M (2011) The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 47(8):1127–1137

    CAS  PubMed  Google Scholar 

  • Bae S, Lee EM, Cha HJ, Kim K, Yoon Y, Lee H et al (2011) Resveratrol alters microRNA expression profiles in A549 human non-small cell lung cancer cells. Mol Cells 32(3):243–249

    CAS  PubMed  Google Scholar 

  • Bailey HH, Mukhtar H (2013) Green tea polyphenols and cancer chemoprevention of genitourinary cancer. American Society of Clinical Oncology educational book/ASCO American Society of Clinical Oncology Meeting 2013:92–96

    Google Scholar 

  • Banerjee S, Li Y, Wang Z, Sarkar FH (2008) Multi-targeted therapy of cancer by genistein. Cancer Lett 269(2):226–242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bao B, Ali S, Kong D, Sarkar SH, Wang Z, Banerjee S et al (2011a) Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One 6(3):e17850

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bao B, Wang Z, Ali S, Kong D, Li Y, Ahmad A et al (2011b) Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett 307(1):26–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bao B, Ali S, Ahmad A, Azmi AS, Li Y, Banerjee S et al (2012a) Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PLoS One 7(12):e50165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS et al (2012b) Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res 72(1):335–345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    CAS  PubMed  Google Scholar 

  • Bishayee A (2009) Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res (Phila) 2(5):409–418

    CAS  Google Scholar 

  • Burk RF (2002) Selenium, an antioxidant nutrient. Nutr Clin Care 5(2):75–79

    PubMed  Google Scholar 

  • Calin GA (2009) MicroRNAs and cancer: what we know and what we still have to learn. Genome Med 1(8):78

    PubMed Central  PubMed  Google Scholar 

  • Careccia S, Mainardi S, Pelosi A, Gurtner A, Diverio D, Riccioni R et al (2009) A restricted signature of miRNAs distinguishes APL blasts from normal promyelocytes. Oncogene 28(45):4034–4040

    CAS  PubMed  Google Scholar 

  • Chen Y, Zaman MS, Deng G, Majid S, Saini S, Liu J et al (2011) MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res (Phila) 4(1):76–86

    CAS  Google Scholar 

  • Chiyomaru T, Yamamura S, Zaman MS, Majid S, Deng G, Shahryari V et al (2012) Genistein suppresses prostate cancer growth through inhibition of oncogenic microRNA-151. PLoS One 7(8):e43812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davidson LA, Wang N, Shah MS, Lupton JR, Ivanov I, Chapkin RS (2009) n-3 polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon. Carcinogenesis 30(12):2077–2084

    CAS  PubMed  Google Scholar 

  • De Marchis ML, Ballarino M, Salvatori B, Puzzolo MC, Bozzoni I, Fatica A (2009) A new molecular network comprising PU.1, interferon regulatory factor proteins and miR-342 stimulates ATRA-mediated granulocytic differentiation of acute promyelocytic leukemia cells. Leukemia 23(5):856–862

    PubMed  Google Scholar 

  • Del Follo-Martinez A, Banerjee N, Li X, Safe S, Mertens-Talcott S (2013) Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a. Nutr Cancer 65(3):494–504

    PubMed  Google Scholar 

  • Dhar S, Hicks C, Levenson AS (2011) Resveratrol and prostate cancer: promising role for microRNAs. Mol Nutr Food Res 55(8):1219–1229

    CAS  PubMed  Google Scholar 

  • Engel P, Fagherazzi G, Boutten A, Dupre T, Mesrine S, Boutron-Ruault MC et al (2010) Serum 25(OH) vitamin D and risk of breast cancer: a nested case-control study from the French E3N cohort. Cancer Epidemiol Biomarkers Prev 19(9):2341–2350

    CAS  PubMed  Google Scholar 

  • Engel P, Fagherazzi G, Mesrine S, Boutron-Ruault MC, Clavel-Chapelon F (2011) Joint effects of dietary vitamin D and sun exposure on breast cancer risk: results from the French E3N cohort. Cancer Epidemiol Biomarkers Prev 20(1):187–198

    CAS  PubMed  Google Scholar 

  • Everett PC, Meyers JA, Makkinje A, Rabbi M, Lerner A (2007) Preclinical assessment of curcumin as a potential therapy for B-CLL. Am J Hematol 82(1):23–30

    CAS  PubMed  Google Scholar 

  • Farago N, Feher LZ, Kitajka K, Das UN, Puskas LG (2011) MicroRNA profile of polyunsaturated fatty acid treated glioma cells reveal apoptosis-specific expression changes. Lipids Health Dis 10:173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fix LN, Shah M, Efferth T, Farwell MA, Zhang B (2010) MicroRNA expression profile of MCF-7 human breast cancer cells and the effect of green tea polyphenon-60. Cancer Genomics Proteomics 7(5):261–277

    CAS  PubMed  Google Scholar 

  • Fleet JC (2004) Rapid, membrane-initiated actions of 1,25 dihydroxyvitamin D: what are they and what do they mean? J Nutr 134(12):3215–3218

    CAS  PubMed  Google Scholar 

  • Fleet JC, DeSmet M, Johnson R, Li Y (2012) Vitamin D and cancer: a review of molecular mechanisms. Biochem J 441(1):61–76

    CAS  PubMed  Google Scholar 

  • Gaedicke S, Zhang X, Schmelzer C, Lou Y, Doering F, Frank J et al (2008) Vitamin E dependent microRNA regulation in rat liver. FEBS Lett 582(23–24):3542–3546

    CAS  PubMed  Google Scholar 

  • Gandhy SU, Kim K, Larsen L, Rosengren RJ, Safe S (2012) Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs. BMC Cancer 12:564

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao SM, Yang JJ, Chen CQ, Chen JJ, Ye LP, Wang LY et al (2012) Pure curcumin decreases the expression of WT1 by upregulation of miR-15a and miR-16-1 in leukemic cells. J Exp Clin Cancer Res 31:27

    PubMed  Google Scholar 

  • Garland CF, Comstock GW, Garland FC, Helsing KJ, Shaw EK, Gorham ED (1989) Serum 25-hydroxyvitamin D and colon cancer: eight-year prospective study. Lancet 2(8673):1176–1178

    CAS  PubMed  Google Scholar 

  • Garland CF, French CB, Baggerly LL, Heaney RP (2011) Vitamin D supplement doses and serum 25-hydroxyvitamin D in the range associated with cancer prevention. Anticancer Res 31(2):607–611

    CAS  PubMed  Google Scholar 

  • Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, Cimmino A et al (2007) MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene 26(28):4148–4157

    CAS  PubMed  Google Scholar 

  • Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179

    CAS  PubMed  Google Scholar 

  • Giangreco AA, Nonn L (2013) The sum of many small changes: microRNAs are specifically and potentially globally altered by vitamin D3 metabolites. J Steroid Biochem Mol Biol 136:86–93

    CAS  PubMed  Google Scholar 

  • Giangreco AA, Vaishnav A, Wagner D, Finelli A, Fleshner N, Van der Kwast T et al (2013) Tumor suppressor microRNAs, miR-100 and -125b, are regulated by 1,25-dihydroxyvitamin D in primary prostate cells and in patient tissue. Cancer Prev Res (Phila) 6(5):483–494

    CAS  Google Scholar 

  • Glienke W, Maute L, Wicht J, Bergmann L (2009) Wilms’ tumour gene 1 (WT1) as a target in curcumin treatment of pancreatic cancer cells. Eur J Cancer 45(5):874–880

    CAS  PubMed  Google Scholar 

  • Gocek E, Wang X, Liu X, Liu CG, Studzinski GP (2011) MicroRNA-32 upregulation by 1,25-dihydroxyvitamin D3 in human myeloid leukemia cells leads to Bim targeting and inhibition of AraC-induced apoptosis. Cancer Res 71(19):6230–6239

    CAS  PubMed  Google Scholar 

  • Guan H, Liu C, Chen Z, Wang L, Li C, Zhao J et al (2013) 1,25-Dihydroxyvitamin D3 up-regulates expression of hsa-let-7a-2 through the interaction of VDR/VDRE in human lung cancer A549 cells. Gene 522(2):142–146

    CAS  PubMed  Google Scholar 

  • Hagiwara K, Kosaka N, Yoshioka Y, Takahashi RU, Takeshita F, Ochiya T (2012) Stilbene derivatives promote Ago2-dependent tumour-suppressive microRNA activity. Sci Rep 2:314

    PubMed Central  PubMed  Google Scholar 

  • Han Z, Yang Q, Liu B, Wu J, Li Y, Yang C et al (2012) MicroRNA-622 functions as a tumor suppressor by targeting K-Ras and enhancing the anticarcinogenic effect of resveratrol. Carcinogenesis 33(1):131–139

    CAS  PubMed  Google Scholar 

  • Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55(3):224–236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirata H, Ueno K, Nakajima K, Tabatabai ZL, Hinoda Y, Ishii N et al (2013) Genistein downregulates onco-miR-1260b and inhibits Wnt-signalling in renal cancer cells. Br J Cancer 108(10):2070–2078

    CAS  PubMed  Google Scholar 

  • Hu S, Dong TS, Dalal SR, Wu F, Bissonnette M, Kwon JH et al (2011) The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS One 6(1):e16221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Izzotti A, Calin GA, Arrigo P, Steele VE, Croce CM, De Flora S (2009) Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J 23(3):806–812

    CAS  PubMed  Google Scholar 

  • Izzotti A, Calin GA, Steele VE, Cartiglia C, Longobardi M, Croce CM et al (2010a) Chemoprevention of cigarette smoke-induced alterations of MicroRNA expression in rat lungs. Cancer Prev Res (Phila) 3(1):62–72

    CAS  Google Scholar 

  • Izzotti A, Larghero P, Cartiglia C, Longobardi M, Pfeffer U, Steele VE et al (2010b) Modulation of microRNA expression by budesonide, phenethyl isothiocyanate and cigarette smoke in mouse liver and lung. Carcinogenesis 31(5):894–901

    CAS  PubMed  Google Scholar 

  • Izzotti A, Larghero P, Balansky R, Pfeffer U, Steele VE, De Flora S (2011) Interplay between histopathological alterations, cigarette smoke and chemopreventive agents in defining microRNA profiles in mouse lung. Mutation Res 717(1–2):17–24

    CAS  PubMed  Google Scholar 

  • Izzotti A, Cartiglia C, Steele VE, De Flora S (2012) MicroRNAs as targets for dietary and pharmacological inhibitors of mutagenesis and carcinogenesis. Mutation Res 751(2):287–303

    CAS  PubMed  Google Scholar 

  • Ji X, Wang Z, Geamanu A, Goja A, Sarkar FH, Gupta SV (2012) Delta-tocotrienol suppresses Notch-1 pathway by upregulating miR-34a in nonsmall cell lung cancer cells. Int J Cancer Journal international du cancer 131(11):2668–2677

    CAS  Google Scholar 

  • Jin Y (2011) 3,3′-Diindolylmethane inhibits breast cancer cell growth via miR-21-mediated Cdc25A degradation. Mol Cell Biochem 358(1–2):345–354

    CAS  PubMed  Google Scholar 

  • Karius T, Schnekenburger M, Dicato M, Diederich M (2012) MicroRNAs in cancer management and their modulation by dietary agents. Biochem Pharmacol 83(12):1591–1601

    CAS  PubMed  Google Scholar 

  • Kasiappan R, Shen Z, Tse AK, Jinwal U, Tang J, Lungchukiet P et al (2012) 1,25-Dihydroxyvitamin D3 suppresses telomerase expression and human cancer growth through microRNA-498. J Biol Chem 287(49):41297–41309

    CAS  PubMed  Google Scholar 

  • Kawasaki H, Taira K (2003) Functional analysis of microRNAs during the retinoic acid-induced neuronal differentiation of human NT2 cells. Nucleic Acids Res Suppl 3:243–244

    CAS  PubMed  Google Scholar 

  • Khan N, Afaq F, Mukhtar H (2008) Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid Redox Signal 10(3):475–510

    CAS  PubMed  Google Scholar 

  • Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y et al (2008) Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer Journal international du cancer 123(3):552–560

    CAS  Google Scholar 

  • Kim YS, Milner J (2001) Molecular targets for selenium in cancer prevention. Nutr Cancer 40(1):50–54

    CAS  PubMed  Google Scholar 

  • Kong D, Heath E, Chen W, Cher ML, Powell I, Heilbrun L et al (2012) Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One 7(3):e33729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W et al (2006) Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99(3):671–678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li L, Aggarwal BB, Shishodia S, Abbruzzese J, Kurzrock R (2004) Nuclear factor-kappaB and IkappaB kinase are constitutively active in human pancreatic cells, and their down-regulation by curcumin (diferuloylmethane) is associated with the suppression of proliferation and the induction of apoptosis. Cancer 101(10):2351–2362

    CAS  PubMed  Google Scholar 

  • Li L, Braiteh FS, Kurzrock R (2005) Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer 104(6):1322–1331

    CAS  PubMed  Google Scholar 

  • Li L, Ahmed B, Mehta K, Kurzrock R (2007a) Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol Cancer Ther 6(4):1276–1282

    CAS  PubMed  Google Scholar 

  • Li M, Zhang Z, Hill DL, Wang H, Zhang R (2007b) Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res 67(5):1988–1996

    CAS  PubMed  Google Scholar 

  • Li Y, VandenBoom TG 2nd, Kong D, Wang Z, Ali S, Philip PA et al (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69(16):6704–6712

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Vandenboom TG 2nd, Wang Z, Kong D, Ali S, Philip PA et al (2010) miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res 70(4):1486–1495

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Kong D, Ahmad A, Bao B, Dyson G, Sarkar FH (2012a) Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics 7(8):940–949

    CAS  PubMed  Google Scholar 

  • Li Y, Kong D, Ahmad A, Bao B, Sarkar FH (2012b) Targeting bone remodeling by isoflavone and 3,3′-diindolylmethane in the context of prostate cancer bone metastasis. PLoS One 7(3):e33011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang T, Chen MJ, Zhou KY, Tang XD, Wang XG (2004) Induction of apoptosis in human nasopharyngeal carcinoma cell line CNE-2Z by curcumin. Ai Zheng 23(12):1651–1654

    CAS  PubMed  Google Scholar 

  • Majid S, Kikuno N, Nelles J, Noonan E, Tanaka Y, Kawamoto K et al (2008) Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res 68(8):2736–2744

    CAS  PubMed  Google Scholar 

  • Majid S, Dar AA, Ahmad AE, Hirata H, Kawakami K, Shahryari V et al (2009a) BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis 30(4):662–670

    CAS  PubMed  Google Scholar 

  • Majid S, Dar AA, Shahryari V, Hirata H, Ahmad A, Saini S et al (2009b) Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-Cell translocation gene 3 in prostate cancer. Cancer 116(1):66–76

    Google Scholar 

  • Majid S, Dar AA, Saini S, Chen Y, Shahryari V, Liu J et al (2010) Regulation of minichromosome maintenance gene family by microRNA-1296 and genistein in prostate cancer. Cancer Res 70(7):2809–2818

    CAS  PubMed  Google Scholar 

  • Mandal CC, Ghosh-Choudhury T, Dey N, Choudhury GG, Ghosh-Choudhury N (2012) miR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression. Carcinogenesis 33(10):1897–1908

    CAS  PubMed  Google Scholar 

  • Marsit CJ, Eddy K, Kelsey KT (2006) MicroRNA responses to cellular stress. Cancer Res 66(22):10843–10848

    CAS  PubMed  Google Scholar 

  • Melkamu T, Zhang X, Tan J, Zeng Y, Kassie F (2010) Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol. Carcinogenesis 31(2):252–258

    CAS  PubMed  Google Scholar 

  • Melnick A, Licht JD (1999) Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93(10):3167–3215

    CAS  PubMed  Google Scholar 

  • Miller SJ (2004) Cellular and physiological effects of short-chain fatty acids. Mini Rev Med Chem 4(8):839–845

    CAS  PubMed  Google Scholar 

  • Mohri T, Nakajima M, Takagi S, Komagata S, Yokoi T (2009) MicroRNA regulates human vitamin D receptor. Int J Cancer Journal international du cancer 125(6):1328–1333

    CAS  Google Scholar 

  • Mudduluru G, George-William JN, Muppala S, Asangani IA, Kumarswamy R, Nelson LD et al (2011) Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep 31(3):185–197

    CAS  PubMed  Google Scholar 

  • Mukhtar H, Ahmad N (1999a) Green tea in chemoprevention of cancer. Toxicol Sci 52(2 Suppl):111–117

    CAS  PubMed  Google Scholar 

  • Mukhtar H, Ahmad N (1999b) Mechanism of cancer chemopreventive activity of green Tea. Proc Soc Exp Biol Med 220(4):234–238

    CAS  PubMed  Google Scholar 

  • Nakamura K, Yasunaga Y, Segawa T, Ko D, Moul JW, Srivastava S et al (2002) Curcumin down-regulates AR gene expression and activation in prostate cancer cell lines. Int J Oncol 21(4):825–830

    CAS  PubMed  Google Scholar 

  • Okuda T, Yoshida T, Hatano T (1989) Ellagitannins as active constituents of medicinal plants. Planta Med 55(2):117–122

    CAS  PubMed  Google Scholar 

  • Padhye S, Banerjee S, Chavan D, Pandye S, Swamy KV, Ali S et al (2009) Fluorocurcumins as cyclooxygenase-2 inhibitor: molecular docking, pharmacokinetics and tissue distribution in mice. Pharm Res 26(11):2438–2445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Padi SK, Zhang Q, Rustum YM, Morrison C, Guo B (2013) MicroRNA-627 mediates the epigenetic mechanisms of vitamin D to suppress proliferation of human colorectal cancer cells and growth of xenograft tumors in mice. Gastroenterology 145(2):437–446

    CAS  PubMed  Google Scholar 

  • Paik WH, Kim HR, Park JK, Song BJ, Lee SH, Hwang JH (2013) Chemosensitivity induced by down-regulation of microRNA-21 in gemcitabine-resistant pancreatic cancer cells by indole-3-carbinol. Anticancer Res 33(4):1473–1481

    CAS  PubMed  Google Scholar 

  • Parasramka MA, Ho E, Williams DE, Dashwood RH (2012) MicroRNAs, diet, and cancer: new mechanistic insights on the epigenetic actions of phytochemicals. Mol Carcinog 51(3):213–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parker LP, Taylor DD, Kesterson J, Metzinger DS, Gercel-Taylor C (2009) Modulation of microRNA associated with ovarian cancer cells by genistein. Eur J Gynaecol Oncol 30(6):616–621

    CAS  PubMed  Google Scholar 

  • Peng X, Vaishnav A, Murillo G, Alimirah F, Torres KE, Mehta RG (2010) Protection against cellular stress by 25-hydroxyvitamin D3 in breast epithelial cells. J Cell Biochem 110(6):1324–1333

    CAS  PubMed  Google Scholar 

  • Reddy BS, Burill C, Rigotty J (1991) Effect of diets high in omega-3 and omega-6 fatty acids on initiation and postinitiation stages of colon carcinogenesis. Cancer Res 51(2):487–491

    CAS  PubMed  Google Scholar 

  • Rimbach G, Moehring J, Huebbe P, Lodge JK (2010) Gene-regulatory activity of alpha-tocopherol. Molecules 15(3):1746–1761

    CAS  PubMed  Google Scholar 

  • Rossi A, D’Urso OF, Gatto G, Poltronieri P, Ferracin M, Remondelli P et al (2010) Non-coding RNAs change their expression profile after Retinoid induced differentiation of the promyelocytic cell line NB4. BMC Res Notes 3:24

    PubMed Central  PubMed  Google Scholar 

  • Roy S, Levi E, Majumdar AP, Sarkar FH (2012) Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. J Hematol Oncol 5:58

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saini S, Majid S, Dahiya R (2010) Diet, microRNAs and prostate cancer. Pharm Res 27(6):1014–1026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saini S, Arora S, Majid S, Shahryari V, Chen Y, Deng G et al (2011) Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev Res (Phila) 4(10):1698–1709

    CAS  Google Scholar 

  • Salerno E, Scaglione BJ, Coffman FD, Brown BD, Baccarini A, Fernandes H et al (2009) Correcting miR-15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity. Mol Cancer Ther 8(9):2684–2692

    CAS  PubMed  Google Scholar 

  • Sarkar FH, Li Y, Wang Z, Kong D (2009) Cellular signaling perturbation by natural products. Cell Signal 21(11):1541–1547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarveswaran S, Liroff J, Zhou Z, Nikitin AY, Ghosh J (2010) Selenite triggers rapid transcriptional activation of p53, and p53-mediated apoptosis in prostate cancer cells: implication for the treatment of early-stage prostate cancer. Int J Oncol 36(6):1419–1428

    CAS  PubMed  Google Scholar 

  • Saumet A, Vetter G, Bouttier M, Antoine E, Roubert C, Orsetti B et al (2012) Estrogen and retinoic acid antagonistically regulate several microRNA genes to control aerobic glycolysis in breast cancer cells. Mol Biosyst 8(12):3242–3253

    CAS  PubMed  Google Scholar 

  • Scalbert A, Manach C, Morand C, Remesy C, Jimenez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45(4):287–306

    CAS  PubMed  Google Scholar 

  • Shah MS, Davidson LA, Chapkin RS (2012) Mechanistic insights into the role of microRNAs in cancer: influence of nutrient crosstalk. Front Genet 3:305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheth S, Jajoo S, Kaur T, Mukherjea D, Sheehan K, Rybak LP et al (2012) Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS One 7(12):e51655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shui IM, Mucci LA, Kraft P, Tamimi RM, Lindstrom S, Penney KL et al (2012) Vitamin D-related genetic variation, plasma vitamin D, and risk of lethal prostate cancer: a prospective nested case–control study. J Natl Cancer Inst 104(9):690–699

    CAS  PubMed  Google Scholar 

  • Siddiqui IA, Asim M, Hafeez BB, Adhami VM, Tarapore RS, Mukhtar H (2011) Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J 25(4):1198–1207

    CAS  PubMed  Google Scholar 

  • Slaby O, Sachlova M, Brezkova V, Hezova R, Kovarikova A, Bischofova S et al (2013) Identification of microRNAs regulated by isothiocyanates and association of polymorphisms inside their target sites with risk of sporadic colorectal cancer. Nutr Cancer 65(2):247–254

    CAS  PubMed  Google Scholar 

  • Soubani O, Ali AS, Logna F, Ali S, Philip PA, Sarkar FH (2012) Re-expression of miR-200 by novel approaches regulates the expression of PTEN and MT1-MMP in pancreatic cancer. Carcinogenesis 33(8):1563–1571

    CAS  PubMed  Google Scholar 

  • Spencer JP, Abd El Mohsen MM, Minihane AM, Mathers JC (2008) Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br J Nutr 99(1):12–22

    CAS  PubMed  Google Scholar 

  • Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V et al (2011) MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis 32(5):772–778

    CAS  PubMed  Google Scholar 

  • Sun SY, Lotan R (2002) Retinoids and their receptors in cancer development and chemoprevention. Crit Rev Oncol/Hematol 41(1):41–55

    Google Scholar 

  • Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH, Kurzrock R (2008) Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 7(3):464–473

    CAS  PubMed  Google Scholar 

  • Sun Q, Cong R, Yan H, Gu H, Zeng Y, Liu N et al (2009) Genistein inhibits growth of human uveal melanoma cells and affects microRNA-27a and target gene expression. Oncol Rep 22(3):563–567

    CAS  PubMed  Google Scholar 

  • Taylor CK, Levy RM, Elliott JC, Burnett BP (2009) The effect of genistein aglycone on cancer and cancer risk: a review of in vitro, preclinical, and clinical studies. Nutr Rev 67(7):398–415

    PubMed  Google Scholar 

  • Terao M, Fratelli M, Kurosaki M, Zanetti A, Guarnaccia V, Paroni G et al (2011) Induction of miR-21 by retinoic acid in estrogen receptor-positive breast carcinoma cells: biological correlates and molecular targets. J Biol Chem 286(5):4027–4042

    CAS  PubMed  Google Scholar 

  • Thorne JL, Maguire O, Doig CL, Battaglia S, Fehr L, Sucheston LE et al (2011) Epigenetic control of a VDR-governed feed-forward loop that regulates p21(waf1/cip1) expression and function in non-malignant prostate cells. Nucleic Acids Res 39(6):2045–2056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tili E, Michaille JJ, Adair B, Alder H, Limagne E, Taccioli C et al (2010a) Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis 31(9):1561–1566

    CAS  PubMed  Google Scholar 

  • Tili E, Michaille JJ, Alder H, Volinia S, Delmas D, Latruffe N et al (2010b) Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem Pharmacol 80(12):2057–2065

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ting HJ, Messing J, Yasmin-Karim S, Lee YF (2013) Identification of microRNA-98 as a therapeutic target inhibiting prostate cancer growth and a biomarker induced by vitamin D. J Biol Chem 288(1):1–9

    CAS  PubMed  Google Scholar 

  • Tretli S, Hernes E, Berg JP, Hestvik UE, Robsahm TE (2009) Association between serum 25(OH)D and death from prostate cancer. Br J Cancer 100(3):450–454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsang WP, Kwok TT (2010) Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem 21(2):140–146

    CAS  PubMed  Google Scholar 

  • Tzur G, Levy A, Meiri E, Barad O, Spector Y, Bentwich Z et al (2008) MicroRNA expression patterns and function in endodermal differentiation of human embryonic stem cells. PLoS One 3(11):e3726

    PubMed Central  PubMed  Google Scholar 

  • Vinciguerra M, Sgroi A, Veyrat-Durebex C, Rubbia-Brandt L, Buhler LH, Foti M (2009) Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology 49(4):1176–1184

    CAS  PubMed  Google Scholar 

  • Vislovukh A, Kratassiouk G, Porto E, Gralievska N, Beldiman C, Pinna G et al (2013) Proto-oncogenic isoform A2 of eukaryotic translation elongation factor eEF1 is a target of miR-663 and miR-744. Br J Cancer 108(11):2304–2311

    CAS  PubMed  Google Scholar 

  • Wang X, Gocek E, Liu CG, Studzinski GP (2009) MicroRNAs181 regulate the expression of p27Kip1 in human myeloid leukemia cells induced to differentiate by 1,25-dihydroxyvitamin D3. Cell Cycle 8(5):736–741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H, Bian S, Yang CS (2011) Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1alpha. Carcinogenesis 32(12):1881–1889

    CAS  PubMed  Google Scholar 

  • Wang WL, Welsh J, Tenniswood M (2013) 1,25-Dihydroxyvitamin D3 modulates lipid metabolism in prostate cancer cells through miRNA mediated regulation of PPARA. J Steroid Biochem Mol Biol 136:247–251

    CAS  PubMed  Google Scholar 

  • Weinstein SJ, Hartman TJ, Stolzenberg-Solomon R, Pietinen P, Barrett MJ, Taylor PR et al (2003) Null association between prostate cancer and serum folate, vitamin B(6), vitamin B(12), and homocysteine. Cancer Epidemiol Biomarkers Prev 12(11 Pt 1):1271–1272

    CAS  PubMed  Google Scholar 

  • Weiss FU, Marques IJ, Woltering JM, Vlecken DH, Aghdassi A, Partecke LI et al (2009) Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology 137(6):2136–2145.e1-7

    CAS  PubMed  Google Scholar 

  • Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26(34):5017–5022

    CAS  PubMed  Google Scholar 

  • Wen XY, Wu SY, Li ZQ, Liu ZQ, Zhang JJ, Wang GF et al (2009) Ellagitannin (BJA3121), an anti-proliferative natural polyphenol compound, can regulate the expression of MiRNAs in HepG2 cancer cells. Phytother Res 23(6):778–784

    CAS  PubMed  Google Scholar 

  • Whelan J, McEntee MF (2004) Dietary (n-6) PUFA and intestinal tumorigenesis. J Nutr 134(12 Suppl):3421S–3426S

    CAS  PubMed  Google Scholar 

  • Williams CD, Whitley BM, Hoyo C, Grant DJ, Iraggi JD, Newman KA et al (2011) A high ratio of dietary n-6/n-3 polyunsaturated fatty acids is associated with increased risk of prostate cancer. Nutr Res 31(1):1–8

    CAS  PubMed  Google Scholar 

  • Xiao J, Gong AY, Eischeid AN, Chen D, Deng C, Young CY et al (2012) miR-141 modulates androgen receptor transcriptional activity in human prostate cancer cells through targeting the small heterodimer partner protein. Prostate 72(14):1514–1522

    CAS  PubMed  Google Scholar 

  • Yang J, Cao Y, Sun J, Zhang Y (2010) Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med Oncol 27(4):1114–1118

    CAS  PubMed  Google Scholar 

  • Yang CH, Yue J, Sims M, Pfeffer LM (2013) The curcumin analog EF24 targets NF-kappaB and miRNA-21, and has potent anticancer activity in vitro and in vivo. PLoS One 8(8):e71130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Y, Sarkar FH, Majumdar AP (2013a) Down-regulation of miR-21 induces differentiation of chemoresistant colon cancer cells and enhances susceptibility to therapeutic regimens. Transl Oncol 6(2):180–186

    PubMed Central  PubMed  Google Scholar 

  • Yu YH, Chen HA, Chen PS, Cheng YJ, Hsu WH, Chang YW et al (2013b) MiR-520h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol. Oncogene 32(4):431–443

    CAS  PubMed  Google Scholar 

  • Zaman MS, Shahryari V, Deng G, Thamminana S, Saini S, Majid S et al (2012a) Up-regulation of microRNA-21 correlates with lower kidney cancer survival. PLoS One 7(2):e31060

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zaman MS, Thamminana S, Shahryari V, Chiyomaru T, Deng G, Saini S et al (2012b) Inhibition of PTEN gene expression by oncogenic miR-23b-3p in renal cancer. PLoS One 7(11):e50203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Zhang T, Ti X, Shi J, Wu C, Ren X et al (2010) Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem Biophys Res Commun 399(1):1–6

    CAS  PubMed  Google Scholar 

  • Zhong Z, Dong Z, Yang L, Chen X, Gong Z (2012) Inhibition of proliferation of human lung cancer cells by green tea catechins is mediated by upregulation of let-7. Exp Ther Med 4(2):267–272

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanjot Saini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Majid, S., Arora, S., Dahiya, R., Saini, S. (2014). MicroRNAs, Diet and Cancer Chemoprevention. In: Babashah, S. (eds) MicroRNAs: Key Regulators of Oncogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-03725-7_3

Download citation

Publish with us

Policies and ethics