Skip to main content

Glucocorticoids and Fetal Programming; Necessary and Sufficient?

  • Chapter
  • First Online:
Hormones, Intrauterine Health and Programming

Part of the book series: Research and Perspectives in Endocrine Interactions ((RPEI,volume 12))

  • 751 Accesses

Abstract

Epidemiological evidence suggests that early life adversity, as marked by lower birth weight, associates with a substantially increased risk of cardiometabolic and neuropsychiatric disorders in later life, so called “fetal programming.” Fetal overexposure to glucocorticoids is a possible basis for this association. Indeed glucocorticoid treatment or maternal stress may reproduce programmed phenotypes in inbred models where genetic differences are minimised.

The placenta and developing fetal organs highly express 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) which catalyses rapid inactivation of cortisol and corticosterone thus forming a functional barrier to cellular glucocorticoid action. By pass, gene deletion or inhibition of 11β-HSD2 reduces birth weight and programmes lasting changes in cardiometabolic and behavioural parameters in the offspring in mammals including humans. In contrast, whilst maternal malnutrition similarly programmes the offspring and also reduces placental 11β-HSD2 levels, the effects appear to be mediated more by premature activation of the fetal hypothalamic-pituitary-adrenal axis than trans-placental passage of maternal glucocorticoids.

At a molecular level, epigenetic alterations, notably in methylation of specific cytosine deoxynucleotide residues in the promoters of target genes, may underpin persisting alterations in cellular gene expression. However, the inconsistency of patterns of methylation and related gene expression, notably in phenotypically similar progeny of a second programmed generation, imply understanding of such processes is far from complete. This emerging biology and its pathophysiological implications is a ripe avenue for future study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel KM, Wicks S, Susser ES, Dalman C, Pedersen MG, Mortensen PB, Webb RT (2010) Birth weight, schizophrenia, and adult mental disorder is risk confined to the smallest babies? Arch Gen Psychiat 67:923–930

    Article  PubMed  Google Scholar 

  • Alikhani-Koopaei R, Fouladkou F, Frey FJ, Frey BM (2004) Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression. J Clin Invest 114:1146–1157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anway M, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    Article  CAS  PubMed  Google Scholar 

  • Bao J, Yan W (2012) Male germline control of transposable elements. Biol Reprod 86:1–14

    Article  Google Scholar 

  • Barker DJP, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341:938–941

    Article  CAS  PubMed  Google Scholar 

  • Benediktsson R, Lindsay RS, Noble J, Seckl JR, Edwards CR (1993) Glucocorticoid exposure in utero: a new model for adult hypertension. Lancet 341:339–341

    Article  CAS  PubMed  Google Scholar 

  • Benediktsson R, Calder AA, Edwards CR, Seckl JR (1997) Placental 11beta-hydroxysteroid dehydrogenase:a key regulator of fetal glucocorticoid exposure. Clin Endocrinol 46:161–166

    Article  CAS  Google Scholar 

  • Bian XP, Seidler FJ, Slotkin TA (1982) Promotional role for glucocorticoids in the development of intracellular signalling: enhanced cardiac and renal adenylate cyclase reactivity to ß-adrenergic and non-adrenergic stimuli after low-dose fetal dexamethasone exposure. J Dev Physiol 17:289–297

    Google Scholar 

  • Bloom SL, Sheffield JS, McIntire DD, Leveno KJ (2001) Antenatal dexamethasone and decreased birth weight. Obstet Gynecol 97:485–490

    Article  CAS  PubMed  Google Scholar 

  • Brocklehurst P, Gates S, McKenzie-McHarg K, Alfirevic Z, Chamberlain G (1999) Are we prescribing multiple courses of antenatal corticosteroids? A survey of practice in the UK. Br J Obstet Gynecol 106:977–979

    Article  CAS  Google Scholar 

  • Brown RW, Chapman KE, Kotelevtsev Y, Yau JL, Lindsay RS, Brett L, Leckie C, Murad P, Lyons V, Mullins JJ, Edwards CR, Seckl JR (1996a) Cloning and production of antisera to human placental 11 beta-hydroxysteroid dehydrogenase type 2. Biochem J 313:1007–1017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown RW, Diaz R, Robson AC, Kotelevtsev YV, Mullins JJ, Kaufman MH, Seckl JR (1996b) The ontogeny of 11ß-hydroxysteroid dehydrogenase type 2 and mineralocorticoid receptor gene expression reveal intricate control of glucocorticoid action in development. Endocrinology 137:794–797

    CAS  PubMed  Google Scholar 

  • Burdge G, Hanson MA, Slater-Jefferies JL, Lillycrop KA (2007) Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br J Nutr 97:1036–1046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell AL, Murphy BEP (1977) The maternal-fetal cortisol gradient during pregnancy and at delivery. J Clin Endocrinol Metab 45:435–440

    Article  CAS  PubMed  Google Scholar 

  • Chapman KE, Holmes MC, Seckl JR (2013) 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev 93:1139–1206. doi:10.1152/physrev.00020.2012

    Article  CAS  PubMed  Google Scholar 

  • Clark PM, Hindmarsh PC, Shiell AW, Law CM, Honour JW, Barker DJ (1996) Size at birth and adrenocortical function in childhood. Clin Endocrinol 45:721–726

    Article  CAS  Google Scholar 

  • Cole TJ, Blendy JA, Monaghan AP, Schmid W, Aguzzi A, Schütz G (1995) Molecular genetic analysis of glucocorticoid signaling during mouse development. Steroids 60:93–96

    Article  CAS  PubMed  Google Scholar 

  • Condon J, Gosden C, Gardener D, Nickson P, Hewison M, Howie AJ, Stewart PM (1998) Expression of type 2 11beta-hydroxysteroid dehydrogenase and corticosteroid hormone receptors in early human fetal life. J Clin Endocrinol Metab 83:4490–4497

    CAS  PubMed  Google Scholar 

  • Cottrell EC, Holmes MC, Livingstone DE, Kenyon CJ, Seckl JR (2012) Reconciling the nutritional and glucocorticoid hypotheses of fetal programming. FASEB J 26:1866–1874

    Article  CAS  PubMed  Google Scholar 

  • Crowley P (2000) Prophylactic corticosteroids for preterm birth. Cochrane Database System Rev 2000, CD000065

    Google Scholar 

  • Dalziel SR, Walker NK, Parag V, Mantell C, Rea HH, Rodgers A, Harding JE (2005) Cardiovascular risk factors after antenatal exposure to betamethasone: 30-year follow-up of a randornised controlled trial. Lancet 365:1856–1862

    Article  CAS  PubMed  Google Scholar 

  • Dave-Sharma S, Wilson RC, Harbison MD, Newfield R, Azar MR, Krozowski ZS, Funder JW, Shackleton CH, Bradlow HL, Wei JQ, Hertecant J, Moran A, Neiberger RE, Balfe JW, Fattah A, Daneman D, Akkurt HI, De Santis C, New MI (1998) Examination of genotype and phenotype relationships in 14 patients with apparent mineralocorticoid excess. J Clin Endocrinol Metab 83:2244–2254

    CAS  PubMed  Google Scholar 

  • de Vries A, Holmes MC, Heijnis A, Seier JV, Heerden J, Louw J, Wolfe-Coote S, Meaney MJ, Levitt NS, Seckl JR (2007) Dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic pituitary-adrenal axis function. J Clin Invest 117:1058–1067

    Article  PubMed Central  PubMed  Google Scholar 

  • Diaz R, Brown RW, Seckl JR (1998) Ontogeny of mRNAs encoding glucocorticoid and mineralocorticoid receptors and 11ß-hydroxysteroid dehydrogenases in prenatal rat brain development reveal complex control of glucocorticoid action. J Neurosci 18:2570–2580

    CAS  PubMed  Google Scholar 

  • Dodic M, May CN, Wintour EM, Coghlan JP (1998) An early prenatal exposure to excess glucocorticoid leads to hypertensive offspring in sheep. Clin Sci 94:149–155

    CAS  PubMed  Google Scholar 

  • Dodic M, Peers A, Coghlan JP, May CN, Lumbers E, Yu Z, Wintour EM (1999) Altered cardiovascular haemodynamics and baroreceptor-heart rate reflex in adult sheep after prenatal exposure to dexamethasone. Clin Sci 97:103–109

    Article  CAS  PubMed  Google Scholar 

  • Dodic M, Hantzis V, Duncan J, Rees S, Koukoulas I, Johnson K, Wintour EM, Moritz K (2002) Programming effects of short prenatal exposure to cortisol. FASEB J 16:1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Doyle LW, Ford GW, Davis NM, Callanan C (2000) Antenatal corticosteroid therapy and blood pressure at 14 years of age in preterm children. Clin Sci 98:137–142

    Article  CAS  PubMed  Google Scholar 

  • Drake AJ, Walker BR (2004) The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J Endocrinol 180:1–16

    Article  CAS  PubMed  Google Scholar 

  • Drake AJ, Walker BR, Seckl JR (2005) Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am J Physiol Reg Integr Comp Physiol 288:R34–R38

    Article  CAS  Google Scholar 

  • Drake A, Liu L, Kerrigan D, Meehan RR, Seckl JR (2011) Multigenerational programming in the glucocorticoid programmed rat is associated with generation-specific and parent of origin effects. Epigenetics 6:1334–1343

    Article  CAS  PubMed  Google Scholar 

  • Drake A, McPherson RC, Godfrey KM, Cooper C, Lillycrop KA, Hanson MA, Meehan RR, Seckl JR, Reynolds RM (2012) An unbalanced maternal diet in pregnancy associates with offspring epigenetic changes in genes controlling glucocorticoid action and foetal growth. Clin Endocrinol (Oxf) 77:808–815

    Article  CAS  Google Scholar 

  • Edwards CRW, Benediktsson R, Lindsay RS, Seckl JR (1993) Dysfunction of the placental glucocorticoid barrier: a link between the foetal environment and adult hypertension? Lancet 341:355–357

    Article  CAS  PubMed  Google Scholar 

  • Forest MG, David M, Morel Y (1993) Prenatal diagnosis and treatment of 21-hydroxylase deficiency. J Steroid Biochem Mol Biol 45:75–82

    Article  CAS  PubMed  Google Scholar 

  • French NP, Hagan R, Evans SF, Godfrey M, Newnham JP (1999) Repeated antenatal corticosteroids: size at birth and subsequent development. Am J Obstet Gynecol 180(1 Pt 1):114–121

    Article  CAS  PubMed  Google Scholar 

  • Friso S, Pizzolo F, Choi SW, Guarini P, Castagna A, Ravagnani V, Carletto A, Pattini P, Corrocher R, Olivieri O (2008) Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis 199:323–327

    Article  CAS  PubMed  Google Scholar 

  • Gatford KL, Wintour EM, De Blasio MJ, Owens JA, Dodic M (2000) Differential timing for programming of glucose homoeostasis, sensitivity to insulin and blood pressure by in utero exposure to dexamethasone in sheep. Clin Sci 98:553–560

    Article  CAS  PubMed  Google Scholar 

  • Gennari-Moser C, Khankin EV, Schüller S, Escher G, Frey BM, Portmann CB, Baumann MU, Lehmann AD, Surbek D, Karumanchi SA, Frey FJ, Mohaupt MG (2011) Regulation of placental growth by aldosterone and cortisol. Endocrinology 152:263–271

    Article  CAS  PubMed  Google Scholar 

  • Goland RS, Jozak S, Warren WB, Conwell IM, Stark RI, Tropper PJ (1993) Elevated levels of umbilical cord plasma corticotropin-releasing hormone in growth-retarded fetuses. J Clin Endo Metab 77:1174–1179

    CAS  Google Scholar 

  • Goland RS, Tropper PJ, Warren WB, Stark RI, Jozak SM, Conwell IM (1995) Concentrations of corticotropin-releasing hormone in the umbilical-cord blood of pregnancies complicated by preeclampsia. Reprod Fert Dev 7:1227–1230

    Article  CAS  Google Scholar 

  • Harris A, Seckl J (2010) Glucocorticoids, prenatal stress and the programming of disease. Horm Behav 59:279–289

    Article  PubMed  Google Scholar 

  • Holmes MC, Abrahamsen CT, French KL, Paterson JM, Mullins JJ, Seckl JR (2006a) The mother or the fetus? 11 beta-hydroxysteroid dehydrogenase type 2 null mice provide evidence for direct fetal programming of behavior by endogenous glucocorticoids. J Neurosci 26:3840–3844

    Article  CAS  PubMed  Google Scholar 

  • Holmes MC, Sangra M, French KL, Whittle IR, Paterson J, Mullins JJ, Seckl JR (2006b) 11 beta-Hydroxysteroid dehydrogenase type 2 protects the neonatal cerebellum from deleterious effects of glucocorticoids. Neuroscience 137:865–873

    Article  CAS  PubMed  Google Scholar 

  • Huh SY, Andrew R, Rich-Edwards JW, Kleinman KP, Seckl JR, Gillman MW (2008) Association between umbilical cord glucocorticoids and blood pressure at age 3 years. BMC Med 6:25

    Article  PubMed Central  PubMed  Google Scholar 

  • Ikegami M, Jobe AH, Newnham J, Polk DH, Willet KE, Sly P (1997) Repetitive prenatal glucocorticoids improve lung function and decrease growth in preterm lambs. Am J Respir Crit Care Med 156:178–184

    Article  CAS  PubMed  Google Scholar 

  • Jensen EC, Gallaher BW, Breier BH, Harding JE (2002) The effect of a chronic maternal cortisol infusion on the late-gestation fetal sheep. J Endocrinol 174:27–36

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Chillaron JC, Isganaitis E, Charalambous M, Gesta S, Pentinat-Pelegrin T, Faucette RR, Otis JP, Chow A, Diaz R, Ferguson-Smith A, Patti ME (2009) Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes 58:460–468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lam L, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, Kobor MS (2012) Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci U S A 109(Suppl 2):17253–17260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levitt N, Lindsay RS, Holmes MC, Seckl JR (1996) Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat. Neuroendocrinology 64:412–418

    Article  CAS  PubMed  Google Scholar 

  • Levitt NS, Lambert EV, Woods D, Hales CN, Andrew R, Seckl JR (2000) Impaired glucose tolerance and elevated blood pressure in low birth weight, non-obese young South African adults: early programming of the cortisol axis. J Clin Endocrinol Metab 85:4611–4618

    CAS  PubMed  Google Scholar 

  • Lindsay RS, Lindsay RM, Edwards CR, Seckl JR (1996a) Inhibition of 11ß-hydroxysteroid dehydrogenase in pregnant rats and the programming of blood pressure in the offspring. Hypertension 27:1200–1204

    Article  CAS  PubMed  Google Scholar 

  • Lindsay RS, Lindsay RM, Waddell BJ, Seckl JR (1996b) Programming of glucose tolerance in the rat: role of placental 11ß-hydroxysteroid dehydrogenase. Diabetologia 39:1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bernal A, Flint APF, Anderson ABM, Turnbull AC (1980) 11ß-Hydroxysteroid dehydrogenase activity (E.C.1.1.1.146) in human placenta and decidua. J Steroid Biochem 13:1081–1087

    Article  CAS  Google Scholar 

  • Lopez Bernal A, Craft IL (1981) Corticosteroid metabolism in vitro by human placenta, foetal membranes and decidua in early and late gestation. Placenta 2:279–285

    Article  CAS  PubMed  Google Scholar 

  • Mairesse J, Lesage J, Breton C, Bréant B, Hahn T, Darnaudéry M, Dickson SL, Seckl J, Blondeau B, Vieau D, Maccari S, Viltart O (2007) Maternal stress alters endocrine function of the feto-placental unit in rats. Am J Physiol-Endocrinol Metab 292:E1526–E1533

    Article  CAS  PubMed  Google Scholar 

  • McCabe L, Marash D, Li A, Matthews SG (2001) Repeated antenatal glucocorticoid treatment decreases hypothalamic corticotropin releasing hormone mRNA but not corticosteroid receptor mRNA expression in the fetal guinea-pig brain. J Neuroendocrinol 13:425–431

    Article  CAS  PubMed  Google Scholar 

  • McTernan CL, Draper N, Nicholson H, Chalder SM, Driver P, Hewison M, Kilby MD, Stewart PM (2001) Reduced placental 11 beta-hydroxysteroid dehydrogenase type 2 mRNA levels in human pregnancies complicated by intrauterine growth restriction: an analysis of possible mechanisms. J Clin Endocrinol Metab 86:4979–4983

    CAS  PubMed  Google Scholar 

  • Mercado AB, Wilson RC, Cheng KC, Wei JQ, New MI (1995) Prenatal treatment and diagnosis of congential adrenal hyperlasia owing to 21-hydroxylase deficiency. J Clin Endocrinol Metab 80:2014–2020

    CAS  PubMed  Google Scholar 

  • Moss TJ, Sloboda DM, Gurrin LC, Harding R, Challis JR, Newnham JP (2001) Programming effects in sheep of prenatal growth restriction and glucocorticoid exposure. Am J Physiol Reg Integr Comp Physiol 281:R960–R970

    CAS  Google Scholar 

  • Murphy VE, Zakar T, Smith R, Giles WB, Gibson PG, Clifton VL (2002) Reduced 11beta-hydroxysteroid dehydrogenase type 2 activity is associated with decreased birth weight centile in pregnancies complicated by asthma. J Clin Endocrinol Metab 87:1660–1668

    CAS  PubMed  Google Scholar 

  • Newnham JP, Evans SF, Godfrey M, Huang W, Ikegami M, Jobe A (1999) Maternal, but not fetal, administration of corticosteroids restricts fetal growth. J Mat Fet Med 8:81–87

    Article  CAS  Google Scholar 

  • Nyirenda MJ, Lindsay RS, Kenyon CJ, Burchell A, Seckl JR (1998) Glucocorticoid exposure in late gestation permanently programmes rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest 101:2174–2181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nyirenda MJ, Carter R, Tang JI, de Vries A, Schlumbohm C, Hillier SG, Streit F, Oellerich M, Armstrong VW, Fuchs E, Seckl JR (2009) Prenatal programming of metabolic syndrome in the common marmoset is associated with increased expression of 11 beta-hydroxysteroid dehydrogenase type 1. Diabetes 58:2873–2879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Donnell KJ, Bugge Jensen A, Freeman L, Khalife N, O’Connor TG, Glover V (2012) Maternal prenatal anxiety and downregulation of placental 11 beta-HSD2. Psychoneuroendocrinology 37:818–826

    Article  PubMed  Google Scholar 

  • Phillips DI, Barker DJ, Fall CH, Seckl JR, Whorwood CB, Wood PJ, Walker BR (1998) Elevated plasma cortisol concentrations: an explanation for the relationship between low birthweight and adult cardiovascular risk factors. J Clin Endocrinol Metab 83:757–760

    CAS  PubMed  Google Scholar 

  • Phillips DIW, Walker BR, Reynolds RM, Flanagan DE, Wood PJ, Osmond C, Barker DJ, Whorwood CB (2000) Low birth weight predicts elevated plasma cortisol concentrations in adults from 3 populations. Hypertension 35:1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Provençal N, Suderman MJ, Guillemin C, Massart R, Ruggiero A, Wang D, Bennett AJ, Pierre PJ, Friedman DP, Côté SM, Hallett M, Tremblay RE, Suomi SJ, Szyf M (2012) The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. J Neurosci 32:15626–15642

    Article  PubMed Central  PubMed  Google Scholar 

  • Reinisch JM, Simon NG, Karow WG, Gandelman R (1978) Prenatal exposure to prednisone in humans and animals retards intra-uterine growth. Science 202:436–438. doi:10.1126/science.705336

    Article  CAS  PubMed  Google Scholar 

  • Reynolds RM, Walker BR, Syddall HE, Andrew R, Wood PJ, Whorwood CB, Phillips DI (2001) Altered control of cortisol secretion in adult men with low birth weight and cardiovascular risk factors. J Clin Endocrinol Metab 86:245–250

    CAS  PubMed  Google Scholar 

  • Rogerson FM, Kayes K, White PC (1996) No correlation in human placenta between activity or mRNA for the K (type 2) isozyme of 11ß-hydroxysteroid dehydrogenase and fetal or placental weight. Tenth Intl Cong Endocrinol Abstr P1–231:193

    Google Scholar 

  • Rogerson FM, Kayes KM, White PC (1997) Variation in placental type 2 11beta-hydroxysteroid dehydrogenase activity is not related to birth weight or placental weight. Mol Cell Endocrinol 128:103–109

    Article  CAS  PubMed  Google Scholar 

  • Sampath-Kumar R, Matthews SG, Yang K (1998) 11Beta-hydroxysteroid dehydrogenase type 2 is the predominant isozyme in the guinea pig placenta: decreases in messenger ribonucleic acid and activity at term. Biol Reprod 59:1378–1384

    Article  CAS  PubMed  Google Scholar 

  • Seckl JR (1998) Physiologic programming of the fetus. Clin Perinatol 25: 939–964 intra-uterine growth. Science 202:436–438

    Google Scholar 

  • Seckl JR (2006) Glucocorticoids, developmental “programming” and the risk of affective dysfunction. In: de Kloet ER, Oitzl MS, Vermette E (eds) Colloquium on stress hormones and post traumatic stress disorder – basic studies and clinical perspectives. Elsevier, Amsterdam, The Netherlands, pp 17–32

    Google Scholar 

  • Seckl JR, Holmes MC (2007) Mechanisms of disease: glucocorticoids, their placental metabolism and fetal “programming” of adult pathophysiology. Nat Clin Prac Endocrinol Metab 3:479–488

    Article  CAS  Google Scholar 

  • Shams M, Kilby MD, Somerset DA, Howie AJ, Gupta A, Wood PJ, Afnan M, Stewart PM (1998) 11Beta hydroxysteroid dehydrogenase type 2 in human pregnancy and reduced expression in intrauterine growth retardation. Hum Reprod 13:799–804

    Article  CAS  PubMed  Google Scholar 

  • Speirs HJL, Seckl JR, Brown RW (2004) Ontogeny of glucocorticoid receptor and 11 beta-hydroxysteroid dehydrogenase type-1 gene expression identifies potential critical periods of glucocorticoid susceptibility during development. J Endocrinol 181:105–116

    Article  CAS  PubMed  Google Scholar 

  • Stewart PM, Rogerson FM, Mason JI (1995) Type 2 11ß-hydroxysteroid dehydrogenase messenger RNA and activity in human placenta and fetal membranes: its relationship to birth weight and putative role in fetal steroidogenesis. J Clin Endocrinol Metab 80:885–890

    CAS  PubMed  Google Scholar 

  • Stouder C, Paoloni-Giacobino A (2011) Specific transgenerational imprinting effects of the endocrine disruptor methoxychlor on male gametes. Reproduction 141:207–216

    Article  CAS  PubMed  Google Scholar 

  • Sugden MC, Langdown ML, Munns MJ, Holness MJ (2001) Maternal glucocorticoid treatment modulates placental leptin and leptin receptor expression and materno-fetal leptin physiology during late pregnancy, and elicits hypertension associated with hyperleptinaemia in the early-growth-retarded adult offspring. Eur J Endocrinol 145:529–539

    Article  CAS  PubMed  Google Scholar 

  • Sun K, Yang K, Challis JRG (1997) Differential expression of 11beta-hydroxysteroid dehydrogenase types 1 and 2 in human placenta and fetal membranes. J Clin Endocrinol Metab 82:300–305

    CAS  PubMed  Google Scholar 

  • Venihaki MA, Carrigan A, Dikkes P, Majzoub JA (2000) Circadian rise in maternal glucocorticoid prevents pulmonary dysplasia in fetal mice with adrenal insufficiency. Proc Natl Acad Sci U S A 97:7336–7341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waddell BJ, Atkinson HC (1994) Production rate, metabolic clearance rate and uterine extraction of corticosterone during rat pregnancy. J Endocrinol 143:183–190

    Article  CAS  PubMed  Google Scholar 

  • Waddell B, Benediktsson R, Brown RW, Seckl JR (1998) Tissue-specific mRNA expression of 11B-hydroxysteroid dehydrogenase types 1 and 2 and the glucocorticoid receptor within rat placenta suggest exquisite local control of glucocorticoid action. Endocrinology 139:1517–1523

    CAS  PubMed  Google Scholar 

  • Ward RM (1994) Pharmacologic enhancement of fetal lung maturation. Clin Perinatol 21:523–542

    CAS  PubMed  Google Scholar 

  • Whincup PH, Kaye SJ, Owen CG, Huxley R, Cook DG, Anazawa S, Barrett-Connor E, Bhargava SK, Birgisdottir BE, Carlsson S, de Rooij SR, Dyck RF, Eriksson JG, Falkner B, Fall C, Forsén T, Grill V, Gudnason V, Hulman S, Hyppönen E, Jeffreys M, Lawlor DA, Leon DA, Minami J, Mishra G, Osmond C, Power C, Rich-Edwards JW, Roseboom TJ, Sachdev HS, Syddall H, Thorsdottir I, Vanhala M, Wadsworth M, Yarbrough DE (2008) Birth weight and risk of type 2 diabetes a systematic review. JAMA 300:2886–2897

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. Seckl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seckl, J.R. (2014). Glucocorticoids and Fetal Programming; Necessary and Sufficient?. In: Seckl, J., Christen, Y. (eds) Hormones, Intrauterine Health and Programming. Research and Perspectives in Endocrine Interactions, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-02591-9_1

Download citation

Publish with us

Policies and ethics