Skip to main content

Single-Electron Transistor and Quantum Dots on Graphene

  • Chapter
  • First Online:
Toward Quantum FinFET

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 17))

  • 2606 Accesses

Abstract

Graphene has been proclaimed to be a new revolutionary material for electronics. In particular, graphene-based transistors have developed rapidly and are now considered an option for post-silicon electronics. Quantum FinFET and quantum computation are keeping on attracting scientists’ research interest since it came out. It reveals a cornucopia of new physics and potential applications and has always maintained a very active research environment; many striking research efforts and advanced technologies emerge. New ideas and issues are continuously proposed.

Spin-based semiconductor quantum dot for the solid-state quantum information process has been considered as a very promising direction. A lot of excellent efforts have been made in this area, but there are also many difficulties to deal with, such as how to extend the spin coherence time. Scientists have tried many methods to solve this problem: one is to use new material, such as graphene to substitute currently used traditional gallium arsenide semiconductor material. Research on nanoscale transistors switching with only a single electron exemplifies that there are a number of unresolved problems that material scientists should tackle in the future for making the graphene dreams come true.

In this chapter, we will talk about all kind of graphene-based quantum dot devices, including single dot, single dot with integrated single-electron transistor (SET) charge detector, double dot in series, and double dot in parallel. We investigate the properties of devices by doing the low-temperature quantum transport measurements. Detailed descriptions on the fabrication methods of graphene quantum dot devices are described. And also the information of the ground states and excited states and the relevant energy scales and capacitances of the graphene quantum dot are investigated, as denoted by the presence of characteristic Coulomb blockade diamond diagrams. A twin-dot structure in which the larger dot serves as a single-electron transistor (SET) to read out the charge state of the nearby gate-controlled small dot has been fabricated. A high SET sensitivity of \( {10}^{-3}e/\sqrt{\mathrm{Hz}} \) allowed us to probe Coulomb charging as well as excited state spectra of the QD, even in the regime where the current through the QD is too small to be measured by conventional transport means. Graphene double quantum dot devices with multiple electrostatic gates are investigated by low-temperature transport measurements; the honeycomb charge stability diagrams reveal the interdot coupling strength changed from weak to strong regime by tuning both the in-plane plunger gates and back gate. A large interdot tunnel coupling strength for this system allows for the observation of tunnel-coupled molecular states extending over the whole double dot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  2. Novoselov, K., Jiang, D., Schedin, F., Booth, T., Khotkevich, V., Morozov, S., Geim, A.: Proc. Natl. Acad. Sci. USA 102, 10451 (2005)

    Article  ADS  Google Scholar 

  3. Geim, A.K., Novoselov, K.: Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  4. Neto, A., Guinea, F., Peres, N., Novoselov, K., Geim, A.: Rev. Mod. Phys. 81, 109–162 (2009)

    Article  ADS  Google Scholar 

  5. Ihn, T., Güttinger, J., Molitor, F., Schnez, S., Schurtenberger, E., Jacobsen, A., Hellmüller, S., Frey, T., Droscher, S., Stampfer, C., Ensslin, K.: Mater. Today 13, 44 (2010)

    Article  Google Scholar 

  6. Schwierz, F.: Nat. Nanotechnol. 5, 487 (2010)

    Article  ADS  Google Scholar 

  7. Hanson, R., Kouwenhoven, L.P., Petta, J.R., Tarucha, S., Vandersypen, L.M.K.: Rev. Mod. Phys. 79, 1217 (2007)

    Article  ADS  Google Scholar 

  8. Hanson, R., Awschalom, D.: Nature 453, 1043 (2008)

    Article  ADS  Google Scholar 

  9. Taylor, J.M., Engel, H.A., Dur, W., Yacoby, A., Marcus, C.M., Zoller, P., Lukin, M.D.: Nat. Phys. 1, 177 (2005)

    Article  Google Scholar 

  10. Fischer, J., Loss, D.: Science 324, 1277 (2009)

    Article  Google Scholar 

  11. Trauzettel, B., Bulaev, D.V., Loss, D., Burkard, G.: Nat. Phys. 3, 192 (2007)

    Article  Google Scholar 

  12. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  13. Silvestrov, P.G., Efetov, K.B.: Phys. Rev. Lett. 98, 016802 (2007)

    Article  ADS  Google Scholar 

  14. Pereira Jr., J.M., Vasilopoulos, P., Peeters, F.M.: Nano Lett. 7, 946 (2007)

    Article  ADS  Google Scholar 

  15. Recher, P., Nilsson, J., Burkard, G., Trauzettel, B.: Phys. Rev. B 79, 085407 (2009)

    Article  ADS  Google Scholar 

  16. Martino, A.D., Dell’Anna, L., Egger, R.: Phys. Rev. Lett. 98, 066802 (2007)

    Article  ADS  Google Scholar 

  17. Ponomarenko, L., Schedin, F., Katsnelson, M., Yang, R., Hill, E., Novoselov, K., Geim, A.: Science 320, 356 (2008)

    Article  ADS  Google Scholar 

  18. Stampfer, C., Schurtenberger, E., Molitor, F., Guettinger, J., Ihn, T., Ensslin, K.: Nano Lett. 8, 2378 (2008)

    Article  ADS  Google Scholar 

  19. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Nature 438, 197–200 (2005)

    Article  ADS  Google Scholar 

  20. Zhang, Y., Tan, Y.W., Stormer, H.L., Kim, P.: Nature 438, 201–204 (2005)

    Article  ADS  Google Scholar 

  21. Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Nature 458, 877–880 (2009)

    Article  ADS  Google Scholar 

  22. Dimiev, A., Price, B., Tour, J.: Nature 458, 872–876 (2009)

    Article  ADS  Google Scholar 

  23. Neubeck, S., Ponomarenko, L., Freitag, F., Giesbers, A., Zeitler, U., Morozov, S., Blake, P., Geim, A., Novoselov, K.: Small 6, 1469–1473 (2010)

    Article  Google Scholar 

  24. Wang, L.J., Cao, G., Tu, T., Li, H.O., Zhou, C., Hao, X.J., Su, Z., Guo, G.C., Jiang, H.W., Guo, G.P.: Appl. Phys. Lett. 97, 262113 (2010)

    Article  ADS  Google Scholar 

  25. Marcus, C.M., McEuen, P.L., Tarucha, S., Westervelt, R.M., Wingreen, N.: In: NATO ASI conference proceedings (1997)

    Google Scholar 

  26. Gelmont, B., Shur, M.S., Mattauch, R.J.: Solid State Electron. 38, 731 (1995)

    Article  ADS  Google Scholar 

  27. Avouris, P.Z., Chen, H., Perebeinos, V.: Nat. Nanotechnol. 2, 605 (2007)

    Article  ADS  Google Scholar 

  28. Miao, F., Wijeratne, S., Zhang, Y., Coskun, U.C., Bao, W., Lau, C.N.: Science 317, 1530 (2007)

    Article  ADS  Google Scholar 

  29. Girit, C., Bouchiat, V., Naaman, O., Zhang, Y., Crommie, M.F., Zettl, A., Siddiqi, I.: Nano Lett. 9, 198 (2009)

    Article  ADS  Google Scholar 

  30. Molitor, F., Knowles, H., Droscher, S., Gasser, U., Choi, T., Roulleau, P., Guttinger, J., Jacobsen, A., Stampfer, C., Ensslin, K., Ihn, T.: Europhys. Lett. 89, 67005 (2010)

    Article  ADS  Google Scholar 

  31. Liu, X.L., Hug, D., Vandersypen, L.M.K.: Nano Lett. 10, 1623 (2010)

    Article  ADS  Google Scholar 

  32. Moriyama, S., Tsuya, D., Watanabe, E., Uji, S., Shimizu, M., Mori, T., Yamaguchi, T., Ishibashi, K.: Nano Lett. 9, 2891 (2009)

    Article  ADS  Google Scholar 

  33. Lu, W., Ji, Z.Q., Pfeiffer, L., West, K.W., Rimberg, A.J.: Nature (London) 423, 422 (2003)

    Article  ADS  Google Scholar 

  34. Elzerman, J.M., Hanson, R., van Beveren, L.H.W., Witkamp, B., Vandersypen, L.M.K., Kouwenhoven, L.P.: Nature (London) 430, 431 (2004)

    Article  ADS  Google Scholar 

  35. Bylander, J., Duty, T., Delsing, P.: Nature (London) 434, 361 (2005)

    Article  ADS  Google Scholar 

  36. Gotz, G., Steele, G.A., Vos, W.J., Kouwenhoven, L.P.: Nano Lett. 8, 4039 (2008)

    Article  ADS  Google Scholar 

  37. Lehnert, K.W., Bladh, K., Spietz, L.F., Gunnarsson, D., Schuster, D.I., Delsing, P., Schoelkopf, R.J.: Phys. Rev. Lett. 90, 027002 (2003)

    Article  ADS  Google Scholar 

  38. Duty, T., Gunnarsson, D., Bladh, K., Delsing, P.: Phys. Rev. B 69, 140503(R) (2004)

    Article  ADS  Google Scholar 

  39. Vijay, R., Devoret, M.H., Siddiqi, I.: Rev. Sci. Instrum. 80, 111101 (2009)

    Article  ADS  Google Scholar 

  40. Knobel, G., Cleland, A.N.: Nature (London) 424, 291 (2003)

    Article  ADS  Google Scholar 

  41. LaHaye, D., Buu, O., Camarota, B., Schwab, K.C.: Science 304, 74 (2004)

    Article  ADS  Google Scholar 

  42. Kouwenhoven, L.P., Marcus, C., McEuen, P.L., Tarucha, S., Westervelt, R.M., Wingreen, N.S.: In: Mesoscopic electron transport, Series E: Applied sciences, vol. 345, pp. 105–214. Kluwer Academic, Dordrecht (1997)

    Google Scholar 

  43. Elzerman, J.M., Hanson, R., van Beveren, L.H.W., Vandersypen, L.M.K., Kouwenhoven, L.P.: Appl. Phys. Lett. 84, 4617 (2004)

    Article  ADS  Google Scholar 

  44. Güttinger, J., Stampfer, C., Hellmüller, S., Molitor, F., Ihn, T., Ensslin, K.: Appl. Phys. Lett. 93, 212102 (2008)

    Article  ADS  Google Scholar 

  45. Berman, D., Zhitenev, N.B., Ashoori, R.C., Shayegan, M.: Phys. Rev. Lett. 82, 161 (1999)

    Article  ADS  Google Scholar 

  46. Vink, I.T., Nooitgedagt, T., Schouten, R.N., Vandersypen, L.M.K.: Appl. Phys. Lett. 91, 123512 (2007)

    Article  ADS  Google Scholar 

  47. Hanson, R., Witkamp, B., Vandersypen, L.M.K., van Beveren, L.H.W., Elzerman, J.M., Kouwenhoven, L.P.: Phys. Rev. Lett. 91, 196802 (2003)

    Article  ADS  Google Scholar 

  48. Geim, A.K.: Science 324, 1530 (2009)

    Article  ADS  Google Scholar 

  49. Stampfer, C., Guttinger, J., Molitor, F., Graf, D., Ihn, T., Ensslin, K.: Appl. Phys. Lett. 92, 012102 (2008)

    Article  ADS  Google Scholar 

  50. Schnez, S., Molitor, F., Stampfer, C., Guttinger, J., Shorubalko, I., Ihn, T., Ensslin, K.: Appl. Phys. Lett. 94, 012107 (2009)

    Article  ADS  Google Scholar 

  51. Guttinger, J., Seif, J., Stampfer, C., Capelli, A., Ensslin, K., Ihn, T.: Phys. Rev. B 83, 165445 (2011)

    Article  ADS  Google Scholar 

  52. Molitor, F., Droscher, S., Guttinger, J., Jacobson, A., Stampfer, C., Ihn, T., Ensslin, K.: Appl. Phys. Lett. 94, 222107 (2009)

    Article  ADS  Google Scholar 

  53. Wang, L.J., Guo, G.P., Wei, D., Cao, G., Tu, T., Xiao, M., Guo, G.C., Chang, A.M.: Appl. Phys. Lett. 99, 112117 (2011)

    Article  ADS  Google Scholar 

  54. Volk, C., Fringes, S., Terres, B., Dauber, J., Engels, S., Trellenkamp, S., Stampfer, C.: Nano Lett. 11, 3581 (2011)

    Article  ADS  Google Scholar 

  55. van der Wiel, W.G., de Francheschi, S., Elzermann, J.M., Fujisawa, T., Tarucha, S., Kouwenhoven, L.P.: Rev. Mod. Phys. 75, 1 (2003)

    Article  Google Scholar 

  56. Yang, S., Wang, X., Das Sarma, S.: Phys. Rev. B 83, 161301(R) (2011)

    Article  ADS  Google Scholar 

  57. Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Science 309, 2180 (2005)

    Article  ADS  Google Scholar 

  58. Foletti, S., Bluhm, H., Mahalu, D., Umansky, V., Yacoby, A.: Nat. Phys. 5, 903 (2009)

    Article  Google Scholar 

  59. Mason, N., Biercuk, M.J., Marcus, C.M.: Science 303, 655 (2004)

    Article  ADS  Google Scholar 

  60. Kouwenhoven, L.P., Marcus, C.M., McEuen, P.L., Tarucha, S., Westervelt, R.M., Wingreen, N.: In: Sohn, L.L., Kouwenhoven, L.P., Schon, G. (eds.) Mesoscopic electron transport. Kluwer, Dordrecht (1997)

    Google Scholar 

  61. Graber, M.R., Coish, W.A., Hoffmann, C., Weiss, M., Furer, J., Oberholzer, S., Loss, D., Schonenberger, C.: Phys. Rev. B 74, 075427 (2007)

    Article  ADS  Google Scholar 

  62. Livermore, C., Crouch, C.H., Westervelt, R.M., Campman, K.L., Gossard, A.C.: Science 274, 1332 (1996)

    Article  ADS  Google Scholar 

  63. Hatano, T., Stopa, M., Tarucha, S.: Science 309, 268 (2005)

    Article  ADS  Google Scholar 

  64. Golovach, V.N., Loss, D.: Phys. Rev. B 69, 245327 (2004)

    Article  ADS  Google Scholar 

  65. Ziegler, R., Bruder, C., Schoeller, H.: Phys. Rev. B 62, 1961 (2000)

    Article  ADS  Google Scholar 

  66. Fischer, J., Trauzettel, B., Loss, D.: Phys. Rev. B 80, 155401 (2009)

    Article  ADS  Google Scholar 

  67. Loss, D., DiVincenzo, D.P.: Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  68. Cerletti, V., Coish, W.A., Gywat, O., Loss, D.: Nanotechnology 16, R27 (2005)

    Article  ADS  Google Scholar 

  69. Fasth, C., Fuhrer, A., Bjork, M.T., Samuelson, L.: Nano Lett. 5, 1487 (2005)

    Article  ADS  Google Scholar 

  70. Pfund, A., Shorubalko, I., Leturcq, R., Ensslin, K.: Appl. Phys. Lett. 89, 252106 (2006)

    Article  ADS  Google Scholar 

  71. Sapmaz, S., Meyer, C., Beliczynski, P., Jarillo-Herrero, P., Kouwenhoven, L.P.: Nano Lett. 6, 1350 (2006)

    Article  ADS  Google Scholar 

  72. Holleitner, A.W., Decker, C.R., Qin, H., Eberl, K., Blick, R.H.: Phys. Rev. Lett. 87, 256802 (2001)

    Article  ADS  Google Scholar 

  73. López, R., Aguado, R., Platero, G.: Phys. Rev. Lett. 89, 136802 (2002)

    Article  ADS  Google Scholar 

  74. Ladrón de Guevara, M.L., Claro, F., Orellanal, P.A.: Phys. Rev. B 67, 195335 (2003)

    Article  ADS  Google Scholar 

  75. Orellana, P.A., Ladron de Guevara, M.L., Claro, F.: Phys. Rev. B 70, 233315 (2004)

    Article  ADS  Google Scholar 

  76. Chen, J.C., Chang, A.M., Melloch, M.R.: Phys. Rev. Lett. 92, 176801 (2004)

    Article  ADS  Google Scholar 

  77. Dias de Silva, L.G.G.V., Ingersent, K., Sandler, N., Ulloa, S.E.: Phys. Rev. B 78, 153304 (2008)

    Article  ADS  Google Scholar 

  78. Huard, B., Sulpizio, J.A., Stander, N., Todd, K., Yang, B., Goldhaber-Gordon, D.: Phys. Rev. Lett. 98, 236803 (2007)

    Article  ADS  Google Scholar 

  79. Holleitner, A.W., Blick, R.H., Huttel, A.K., Eberl, K., Kotthaus, J.P.: Science 297, 70 (2002)

    Article  ADS  Google Scholar 

  80. Todd, K., Chou, H.T., Amasha, S., Goldhaber-Gordon, D.: Nano Lett. 9, 416 (2009)

    Article  ADS  Google Scholar 

  81. Guo, G.P., Li, C.F., Guo, G.C.: Phys. Lett. A 286, 401 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  82. Zhang, H., Guo, G.P., Tu, T., Guo, G.C.: Phys. Rev. A 76, 012335 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Jun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, LJ., Tu, T., Wang, L., Zhou, C., Guo, GP. (2013). Single-Electron Transistor and Quantum Dots on Graphene. In: Han, W., Wang, Z. (eds) Toward Quantum FinFET. Lecture Notes in Nanoscale Science and Technology, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-02021-1_14

Download citation

Publish with us

Policies and ethics