Skip to main content

Damage Mechanics-Based Models

  • Chapter
  • First Online:
Solder Joint Reliability Assessment

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 37))

  • 1275 Accesses

Abstract

The mechanics of materials is a branch of mechanics that investigates the response of engineering materials and structures to loading and environment. It relates the externally applied load to internal states of the material, namely displacement, strain and stress, and their dependency on temperature and strain rate. The deformation and failure process of a material is a complex process involving nonlinear behavior and different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca Raton (2005)

    Google Scholar 

  2. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    Article  Google Scholar 

  3. Benzeggah, M.L., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 49, 439–449 (1996)

    Article  Google Scholar 

  4. Broek, D.: Elementary Engineering Fracture Mechanics. Noordhoff International Publishing, Leyden (1974)

    Google Scholar 

  5. Camanho, P.P., Matthews, F.L.: Delamination onset prediction in mechanically fastened joints in composite laminates. J. Compos. Mater. 33, 906–927 (1999)

    Article  Google Scholar 

  6. Chaboche, J.L.: Anisotropic creep damage in the framework of continuum damage mechanics. Nucl. Eng. Technol. 79, 309–319 (1984)

    Article  Google Scholar 

  7. Darveaux, R., Corey, R.: Ductile-to-brittle transition strain rate. In: Proceedings Electronics Packaging Technology Conference (EPTC), pp. 283–289 (2006)

    Google Scholar 

  8. Darveaux, R., Reichman,C.: Ductile to brittle transition rate. In: 8th Electronics Packaging Technology Conference Proceedings, pp. 283–289 (2006)

    Google Scholar 

  9. Darveaux, R.: Effect of simulation methodology on solder joint crack growth correlation and fatigue life prediction. J. Electron. Packag. 124, 147–154 (2002)

    Article  Google Scholar 

  10. Dávila, C.G., Camanho, P.P., Moura, M.F.: Mixed-mode decohesion elements for analyses of progressive delamination. In: Proceedings of 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, pp. 16–19, Seattle, WA, USA (2001)

    Google Scholar 

  11. Dávila, C.G., Camanho, P.P.: Analysis of the effects of residual strains and defects on skin/stiffener debonding using decohesion elements. In: Proceeding of 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference. Norfolk, VA (2003)

    Google Scholar 

  12. Dávila, C.G., Camanho, P.P.: Decohesion elements using two and three-parameter mixed-mode criteria. In: Proceedings of American Helicopter Society Conference, (2001)

    Google Scholar 

  13. Davila, C.G., Johnson, E.R.: Analysis of delamination initiation in postbuckled dropped-ply laminates. AIAA J. 31(4), 721–727 (1993)

    Article  Google Scholar 

  14. De-Andrés, A., et al.: Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading. Int. J. Solids Struct. 36(15), 2231–2258 (1999)

    Article  Google Scholar 

  15. Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8(2), 100–104 (1960)

    Article  Google Scholar 

  16. Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: Part I Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. Trans. ASME 99, 2–15 (1977)

    Article  Google Scholar 

  17. JEDEC: JESD22-B115A, Solder Ball Pull (2010)

    Google Scholar 

  18. JEDEC: JESD22-B117A, Solder Ball Shear, Arlington, VA (2006)

    Google Scholar 

  19. Jing, J., et al.: Simulation of dynamic fracture along solder-pad interfaces using a cohesive zone model. In: ASME Conference Proceedings (48678), pp. 171–176 (2008)

    Google Scholar 

  20. Kachanov, L.M.: Introduction to Continuum Damage Mechanics. Martinus Nijhoff, Dordrecht (1986)

    Book  Google Scholar 

  21. Khatibi, G., et al.: A novel accelerated test technique for assessment of mechanical reliability of solder interconnects. Microelectron. Reliab. 49(9–11), 1283–1287 (2009)

    Article  Google Scholar 

  22. Krueger, R., Cvitkovich, M.K., O’Brien, T.K., Minguet, P.J.: Testing and analysis of composite skin/stringer debonding under multi-axial loading. Compos. Mater. 34, 1263–1300 (2000)

    Article  Google Scholar 

  23. Krueger, R., Minguet, P.J., O’Brien, T.K.: A method for calculating strain energy release rates in preliminary design of composite skin/stringer debonding under multi-axial loading. NASA TM-1999-209365 (1999)

    Google Scholar 

  24. Krueger, R., París, I.L., O’Brien, T.K., Minguet, P.J.: Fatigue life methodology for bonded composite skin/stringer configurations. NASA/TM-2001-210842. VA (April 2001)

    Google Scholar 

  25. Lemaitre, J.: A Course on Damage Mechanics. Springer, Berlin (1992). 2nd Edition (1996)

    Book  Google Scholar 

  26. Li, J., Sen, J.K.: Analysis of frame-to-skin joint pull-off tests and prediction of the delamination failure. In: Proceedings of 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Seattle, WA (2000)

    Google Scholar 

  27. Li, Y.N., et al.: Theory of cohesive crack model with interactive cracks. Int. J. Solids Struct. 35(11), 981–994 (1998)

    Article  Google Scholar 

  28. Murakami, S.: Continuum Damage Mechanics: Solid Mechanics and its Applications. Springer, Berlin (2012)

    Book  Google Scholar 

  29. Ortiz, M.: Microcrack coalescence and macroscopic crack growth initiation in brittle solids. Int. J. Solids Struct. 24(28–29), 231–250 (1988)

    Article  Google Scholar 

  30. Rice, J.R.: Mathematical analysis in the mechanics of fracture. Fracture 2, 191–311 (1968)

    Google Scholar 

  31. Robotnov, Y.N.: Creep Rupture, in Proceedings of Applied Mechanics Conference, H.M. Vincenti (eds). Stanford University, Springer, Berlin. 342-349 (1968)

    Google Scholar 

  32. Roe, K.L., Siegmund, T.: An Irreversible cohesive zone model for interface fatigue crack growth simulation. Eng. Fract. Mech. 70(2), 209–232 (2003)

    Article  Google Scholar 

  33. Rousselier, G.: Ductile fracture models and their potential in local approach of fracture. Nucl. Eng. Des. 105, 97–111 (1987)

    Article  Google Scholar 

  34. Song, F.: Experimental Investigation on Testing Conditions of Solder Ball Shear and Pull Tests and the Correlation with Board Level Mechanical Drop Test. University of Science and Technology, Hong Kong (2007)

    Google Scholar 

  35. Tamin, M.N., Nor, F.M., Loh, W.K.: Hybrid experimental-computational approach for solder/IMC interface shear strength determination in solder joints. IEEE Trans. Compon. Packag. Technol. 33(3), 614–620 (2010)

    Article  Google Scholar 

  36. Towashiraporn, P., Xie, C.: Cohesive modeling of solder interconnect failure in board level drop test. In: The 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM ‘06) (2006)

    Google Scholar 

  37. Tunga, K.R.: Study of Sn-Ag-Cu alloy reliability through material microstructure evolution and laser moire interferometry. Ph.D. Thesis, School of Mechanical Engineering, Georgia Institute of Technology, USA (2008)

    Google Scholar 

  38. Turon, A., Costa, J., Camanho, P.P., Dávila, C.G.: Simulation of delamination in composites under high-cycle fatigue. Composites 38, 2270–2282 (2007)

    Article  Google Scholar 

  39. Yamin, A.F.M., Shaffiar, N.M., Loh, W.K., Tamin, M.N.: Extended cohesive zone model for simulation of solder/IMC interface cyclic damage process in Pb-free solder interconnects. In: Proceedings of 35th International, Electronic Manufacturing Technology Conference, IEMT (2012)

    Google Scholar 

  40. Yamin, A.F.M: Dynamic fracture process of solder/intermetallic interface in lead-free solder interconnects using cohesive zone model. Master Thesis, Universiti Teknologi Malaysia, Malaysia (2012)

    Google Scholar 

  41. Yang, B., et al.: A cohesive zone model for fatigue crack growth in quasibrittle materials. Int. J. Solids Struct. 38(22–23), 3927–3944 (2001)

    Article  Google Scholar 

  42. Yang, B., Ravi-Chandar, K.: A single-domain Dual-boundary-element formulation incorporating a cohesive zone model for elastostatic cracks. Int. J. Fract. 93(1–4), 115–144 (1998)

    Article  Google Scholar 

  43. Yang, Q.D., et al.: A cohesive zone model for low cycle fatigue life prediction of solder joints. Microelectron. Eng. 75(1), 85–95 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd N. Tamin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tamin, M.N., Shaffiar, N.M. (2014). Damage Mechanics-Based Models. In: Solder Joint Reliability Assessment. Advanced Structured Materials, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-00092-3_7

Download citation

Publish with us

Policies and ethics