Skip to main content

Application II: Solder Joints Under Temperature and Mechanical Load Cycles

  • Chapter
  • First Online:
Solder Joint Reliability Assessment

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 37))

  • 1303 Accesses

Abstract

The reliability of microelectronic packages and assemblies is established through reliability testing of the device. In a reliability test, assemblies with BGA solder joints are subjected to temperature cycles, as prescribed by reliability test standards (e.g. JEDEC 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amagai, M.: Chip scale package (CSP) solder joint reliability and modeling. Microelectron. Reliab. 39, 463–477 (1999)

    Article  Google Scholar 

  2. Che, F.X., Yap, D., Luan, J.E., Goh, K.Y., Ma, Y.Y.: Design for cyclic bending reliability of large PBGA assembly using experimental and numerical methods. In: Proceedings of 2008 Electronics Packaging Technology Conference, pp. 1171–1177 (2008)

    Google Scholar 

  3. Darveaux, R., Mawer, A.: Thermal and power cycling limits of plastic ball grid array (PBGA) assemblies. In: Proceeding of Surface Mount Technology, pp. 315–326 (1995)

    Google Scholar 

  4. Darveaux, R.: Solder joint fatigue model. In: Proceeding of TMS Conference (1997)

    Google Scholar 

  5. Dudek, R., Nylen, M., Schubert, A., Michel, B., Reichl, H.: An efficient approach to predict solder fatigue life and its application to SM and area array components. In: Proceedings of the 1997 Electronic Components and Technology Conference, pp. 462–471 (1997)

    Google Scholar 

  6. Dusek, M., Nottay, J., Hunt, C., Lu, H., Bailey, C.: An Experimental Validation of Modeling for Pb-Free Solder Joint Reliability. National Physical Laboratory Report, NPL MATC (A) 11, Middlesex, UK, Oct (2001)

    Google Scholar 

  7. Geng, P., Chen, P., Ling, Y.: Effect of strain rate on solder joint failure under mechanical load. In: Proceedings of 2002 Electronic Components and Technology Conference, pp. 974–978 (2002)

    Google Scholar 

  8. Harada, K., Baba, S., Wu, Q., Matsushima, H., Matsunaga, T., Uegai, Y., Kimura, M.: Analysis of solder joint fracture under mechanical bending test. In: Proceedings of 2003 Electronic Components and Technology Conference, pp. 1731–1737 (2003)

    Google Scholar 

  9. IPC/JEDEC Standard IPC/JEDEC-9702: Monotonic bend characterization of board-level interconnects (2004)

    Google Scholar 

  10. JEDEC Standard JESD22B113: Board level cyclic bend test method for interconnect reliability characterization of components for handheld electronic products (2006)

    Google Scholar 

  11. JESD22-A104B: Temperature Cycling, Electronic Industries Alliance/Joint Electron Device Engineering Council (EIA/JEDEC) (2000)

    Google Scholar 

  12. Kim, I., Lee, S.-B.: Reliability and failure analysis of lead-free solder joints for PBGA package under a cyclic bending load. IEEE Trans. Compon. Packag. Technol. 31, 478–484 (2008)

    Article  Google Scholar 

  13. Kim, I., Lee, S.-B.: Reliability assessment of BGA solder joints under cyclic bending loads. In: Proceedings of 2005 International Symposium on Electronics Materials and Packaging, pp. 27–32 (2005)

    Google Scholar 

  14. Lee, T., Lee, J., Jung, I.: Finite element analysis for solder ball failures in chip scale package. Microelectron. Reliab. 38(12), 1941–1947 (1998)

    Article  Google Scholar 

  15. Liew, Y.B.: Failure assessment of surface mount assembly under thermo-mechanical loading conditions. Master’s thesis, Universiti Teknologi Malaysia, Malaysia (2006)

    Google Scholar 

  16. Manson, S.S.: Thermal Stress and Low Cycle Fatigue. McGraw-Hill, New York (1966)

    Google Scholar 

  17. Mercado, L.L., Phillips, B., Sahasrabudhe, S., Sedillo, J.P., Bray, D., Monroe, E.: Use-condition-based cyclic bend test development for handheld components. In: Proceedings of 2004 Electronic Components and Technology Conference, pp. 1279–1287 (2004)

    Google Scholar 

  18. Ng, H.S., Tee, T.Y., Goh, K.Y., Luan, J.-E., Reinikainen, T., Hussa, E., Kujala, A.: Absolute and relative fatigue life prediction methodology for virtual qualification and design enhancement of lead-free BGA. In: Proceedings of the 2005 Electronic Components and Technology, pp. 1282–1291 (2005)

    Google Scholar 

  19. Pang, H.L.J., Ang, K.H., Shi, X.Q., Wang, Z.P.: Methodology for highly accelerated solder joint reliability test. In: Proceedings on Electronic Packaging Technology Conference, pp. 385–390 (2000)

    Google Scholar 

  20. Pang, H.L.J., Che, F.-X.: Isothermal cyclic bend fatigue test method for lead free solder joints. In: Proceedings of Intersociety Conference on Thermal and Thermo mechanical Phenomena in Electronics Systems, pp. 1011–1017 (2006)

    Google Scholar 

  21. Pang, H.L.J.: Sensitivity study of temperature and strain rate dependent properties on solder joint fatigue life. In: Proceedings of IEEE Electronic Packaging Technology Conference, pp. 184–189 (1998)

    Google Scholar 

  22. Rooney, D.T., Castello, N.T., Cibulsky, M., Abbott, D., Xie, D.: Materials characterization of the effect of mechanical bending on area array package interconnects. Microelectron. Reliab. 44, 275–285 (2004)

    Article  Google Scholar 

  23. Schubert, A., Dudek, R., Auerswald, E., Gollhardt, A., Michel, B., Reichl, H.: Fatigue life models for Sn-Ag-Cu and Sn-Pb solder joints evaluated by experiments and simulation. In: Proceedings of 53rd Electronic Components and Technology Conference, pp. 603–610 (2003)

    Google Scholar 

  24. Shetty, S., Reinikainen, T.: Three- and four-point bend testing for electronic packages. ASME Trans. J. Electron. Packag. 125, 556–561 (2003)

    Article  Google Scholar 

  25. Solomon, H.D.: Fatigue of 60/40 solder. IEEE Trans. Compon. Hybrids Manufact. Technol. 9(4), 423–432 (1986)

    Article  Google Scholar 

  26. Stout, E.A., Sottos, N.R., Skipor, A.F.: Mechanical characterization of plastic ball grid array package flexure using Moiré interferometry. IEEE Trans. Adv. Packag. 23, 637–645 (2000)

    Article  Google Scholar 

  27. Syed, A.: Updated life prediction models for solder joints with removal of modeling assumptions and effect of constitutive equations. In: Proceedings of the 2006 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems (EuroSimE), pp. 1–9 (2006)

    Google Scholar 

  28. Tamin, M.N., Liew, Y.B., Wagiman, A.N.R., Loh, W.K.: Solder joint fatigue in a surface mount assembly subjected to mechanical loading. IEEE Trans. Compon. Packag. Technol. 30(4), 824–829 (2007)

    Article  Google Scholar 

  29. Tunga, K.R.: Study of Sn-Ag-Cu alloy reliability through material microstructure evolution and laser moire interferometry. Ph.D. thesis, School of Mechanical Engineering, Georgia Institute of Technology, USA (2008)

    Google Scholar 

  30. Wiese, S., Meusel, E., Wolter, K.-J.: Microstructural dependence of constitutive properties of eutextic Sn-Ag and Sn-Ag-Cu solders. In: Proceedings of Electronic Components and Technology Conference, pp. 197–206 (2003)

    Google Scholar 

  31. Wu, J.D., Ho, S.H., Zheng, P.J., Liao, C.C., Hung, S.C.: An experimental study of failure and fatigue life of a stacked CSP subjected to cyclic bending. In: Proceedings of 2001 Electronic Components and Technology Conference, pp. 1081–1086 (2001)

    Google Scholar 

  32. Yeo, A., Lee, C., Pang, H.L.J.: Flip chip solder joint fatigue life model investigation. In: Proceedings of Electronics Packaging Technology Conference, pp. 107–114 (2002)

    Google Scholar 

  33. Zahn, B.A.: Solder joint fatigue life model methodology for 63Sn37Pb and 95.5Sn4Ag0.5Cu materials. In: Proceedings of Electronics Components and Technology Conference, pp. 83–94 (2003)

    Google Scholar 

  34. Zhai, C.J., Sidharth, Blish, R., II.: Board level solder reliability versus ramp rate and dwell time during temperature cycling. IEEE Trans. Devices Mater. Reliab. 3(4), 207–212 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd N. Tamin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tamin, M.N., Shaffiar, N.M. (2014). Application II: Solder Joints Under Temperature and Mechanical Load Cycles. In: Solder Joint Reliability Assessment. Advanced Structured Materials, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-00092-3_6

Download citation

Publish with us

Policies and ethics