Skip to main content

Mechanics of Solder Materials

  • Chapter
  • First Online:
Solder Joint Reliability Assessment

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 37))

Abstract

The mechanics of a material describes the response of a material to load. Such response is usually quantified in terms of displacement, strain and stress acting at every point in the material. The mechanical behavior of the material is represented using a stress–strain diagram. The diagram is obtained from tension test data on a sample of the material. Procedures for conducting a tension test on metallic materials are well documented in test standards such as ASTM-E8 [6] and ISO 6892 [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amagai, M.: Characterization of chip scale packaging materials. Microelectron. Reliab. 39(9), 1365–1377 (1999)

    Article  Google Scholar 

  2. Amagai, M., Watanabe, M., Omiya, M., Kishimoto, K., Shibuya, T.: Mechanical characterization of Sn–Ag-based lead-free solders. Microelectron. Reliab. 42(6), 951–966 (2002)

    Article  Google Scholar 

  3. Anand, L.: Constitutive equations for hot working of metals. Int. J. Plast. 1(3), 213–231 (1985)

    Article  Google Scholar 

  4. ASTM International: Standard Test Method for Strain-Controlled Fatigue Testing. ASTM E606 (2012)

    Google Scholar 

  5. ASTM International: Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials. ASTM Standard E139 (2011)

    Google Scholar 

  6. ASTM International: Standard Test Methods for Tension Testing of Metallic Materials. ASTM E8/E8M-13a (2013)

    Google Scholar 

  7. Bodner, S.R., Partom, Y.: Constitutive equations for elastic–viscoplastic strain-hardening materials. ASME Trans. J. Appl. Mech. 42, 385–389 (1975)

    Article  Google Scholar 

  8. Bridgman, P.W.: Studies in Large Plastic Flow and Fracture. McGraw-Hill, New York (1952)

    Google Scholar 

  9. BS EN ISO 6892 2009-1: Metallic materials. Tensile testing. Method of test at ambient temperature

    Google Scholar 

  10. Chaboche, J.L.: Unified cyclic viscoplastic constitutive equations: development, capabilities, and thermodynamic framework. In: Krausz, A.S., Krausz, K. (eds.) Unified Constitutive Laws of Plastic Deformation, pp. 1–68. Academic Press, Waltham (1996)

    Chapter  Google Scholar 

  11. Chen, X., Chen, G., Sakane, M.: Prediction of stress–strain relationship with an improved Anand constitutive model for lead-free solder Sn3.5-Ag. IEEE Trans. Compon. Packag. Technol. pp. 111–116 (2005)

    Google Scholar 

  12. Cheng, Z.N., Wang, G.Z., Chen, L., Wilde, J., Becker, K.: Viscoplastic Anand model for solder alloys and its application. Soldering Surf. Mt. Technol. 12(2), 31–36 (2000)

    Article  Google Scholar 

  13. Darveaux, R., Mawer, A.: Thermal and power cycling limits of plastic ball grid array (PBGA) assemblies. In: Proceedings of Surface Mount Technology Conference, pp. 315–326 (1995)

    Google Scholar 

  14. Darveaux, R.: Solder joint fatigue life model. In: Proceedings of Surface Mount Technology Conference, pp. 213–218 (1997)

    Google Scholar 

  15. Dutta, I., Pana, D., Marks, R.A., Jadhav, S.G.: Effect of thermo-mechanically induced microstructural coarsening on the evolution of creep response of SnAg-based microelectronic solders. Mater. Sci. Eng., A 410–411, 48–52 (2005)

    Article  Google Scholar 

  16. Dutta, I.: A constitutive model for creep of lead-free solders undergoing strain-enhanced microstructural coarsening: a first report. J. Electron. Mater. 32(4), 201–207 (2003)

    Article  Google Scholar 

  17. Garofalo, F.: Fundamentals of Creep and Creep-Rupture in Metals. The Macmillan Company, London (1966)

    Google Scholar 

  18. Gebhardt, E., Petzow, G.: The constitution of the Ag–Cu–Sn system Z. Metallkd. 50, 597–605 (1959) (in German).

    Google Scholar 

  19. Glazer, J.: Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: a review. ASME Trans. J. Electron. Mater. 23(8), 693–700 (1994)

    Article  Google Scholar 

  20. Gong, J., Liu, C., Conway, P.P., Silberschmidt, V.V.: Modelling of Ag3Sn coarsening and its effect on creep of Sn–Ag eutectics. Mater. Sci. Eng. A 427(1–2), 60–68 (2006)

    Article  Google Scholar 

  21. Hacke, P., Sprecher, A.F., Conrad, H.: Computer simulation of thermo-mechanical fatigue of solder joints including microstructure coarsening. J. Electron. Packag. 115(2), 153–158 (1993)

    Article  Google Scholar 

  22. Huebner, K.H., Thornton, E.A., Byrom, T.G.: The Finite Element Method for Engineers. Wiley, New Jersey (1982)

    Google Scholar 

  23. Hwang, J.S.: Implementing Lead-Free Electronics. McGraw-Hill, New York (2004)

    Google Scholar 

  24. Japan Electronics and Information Technology Industries Association (JEITA): Lead-Free Roadmap 2002—Roadmap 2002 for Commercialization of Lead-Free Solder (2002)

    Google Scholar 

  25. Kashyap, B.P., Murty, G.S.: Experimental constitutive relations for the high temperature deformation of a Pb–Sn eutectic alloy. Mater. Sci. Eng. 50(2), 205–213 (1981)

    Article  Google Scholar 

  26. Kim, Y.B., Noguchi, H., Amagai, M.: Vibration fatigue reliability of BGA-IC package with Pb-free solder and Pb–Sn solder. In: Proceedings of 53rd Electronics Components and Technology Conference, pp. 891–897 (2003)

    Google Scholar 

  27. Koh, Y.K.: A Unified Constitutive Models for Solder Materials. Mechanical Engineering thesis, Universiti Teknologi Malaysia, Malaysia (2004)

    Google Scholar 

  28. Lai, Z.B.: Classical and Damage Mechanics-Based Models for Lead-Free Solder Interconnect. Master thesis, Universiti Teknologi Malaysia, Malaysia (2009)

    Google Scholar 

  29. Lau, J., Dauksher, W., Vianco, P.: Acceleration models, constitutive equations, and reliability of lead-free solders and joints. In: Proceedings of the 2003 Electronics Components and Technology Conference, pp. 229–236 (2003)

    Google Scholar 

  30. Lau, J.H., Wong, C.P., Lee, N.C., Lee, R.S.W.: Electronics Manufacturing with Lead-Free, Halogen-Free and Conductive-Adhesive Materials. McGraw-Hill, New York (2003)

    Google Scholar 

  31. Lee, W.W., Nguyen, L.T., Selvaduray, G.S.: Solder joint fatigue models: Review and applicability to chip scale packages. Microelectron. Reliab. 40, 231–244 (2000)

    Google Scholar 

  32. Ma, H.: Characterization of Lead-Free Solders for Electronic Packaging. Ph.D. thesis, Auburn University, Alabama, USA (2007)

    Google Scholar 

  33. Ma, H.: Effects of temperature and strain rate on the mechanical properties of lead-free solders. J. Mater. Sci. 45(9), 2351–2358 (2010)

    Article  Google Scholar 

  34. Manson, S.S.: Thermal Stress and Low Cycle Fatigue. McGraw-Hill, New York (1966)

    Google Scholar 

  35. Mavoori, H., Chin, J., Vaynman, S., Moran, B., Keer, L., Fine, M.: Creep, stress relaxation, and plastic deformation in Sn–Ag and Sn–Zn eutectic solders. J. Electron. Mater. 26(7), 783–790 (1997)

    Article  Google Scholar 

  36. Mukherjee, A.K., Bird, J.E., Dorn, J.E.: Experimental correlation for high-temperature creep. Trans. Am. Soc Met. 62, 155–179 (1969)

    Google Scholar 

  37. National Electronics Manufacturing Initiative (NEMI): Roadmap of Lead-Free Assembly in North America (2002)

    Google Scholar 

  38. Neu, R.W., Scott, D.T., Woodmansee, M.W.: Thermomechanical behavior of 96Sn–4Ag and castin alloy. ASME Trans. J. Electron. Packag. 123(3), 238–246 (2001)

    Article  Google Scholar 

  39. Nguyen, T.T., Yu, D., Park, S.B.: Characterization of the mechanical properties of actual SAC105, SAC405, and SAC405 solder joints by digital image correlation. Electron. Compon. Technol. Conf. 40(6), 1409–1415 (2011)

    Google Scholar 

  40. Nimmo, K.: Alloy selections. In: Suganuma, K. (ed.) Lead-Free Soldering in Electronics-Science, Technology, and Environmental Impact, pp. 49–90. Marcel Dekker, New York (2004)

    Google Scholar 

  41. Ourdjini, A., Hanim, M.A.A., Koh, S.F.J., Siti Aisha, I., Tan, K.S., Chin, Y.T.: Effect of solder volume on interfacial reactions between eutectic Sn–Pb and Sn–Ag–Cu solders and Ni(P)–Au surface finish. In: 31st International Conference on Electronics Manufacturing and Technology, pp. 437–442 (2007)

    Google Scholar 

  42. Owen, D.R.J., Hinton, E.: Finite Elements in Plasticity: Theory and Practice. Pineridge Press Ltd., Swansea (1980)

    Google Scholar 

  43. Pang, J.H.L., Xiong, B.S., Low, T.H.: Creep and fatigue characterization of lead free 95.5Sn–3.8Ag–0.7Cu solder. In: Proceedings of the 2004 Electronic Components and Technology Conference, pp. 1333–1337 (2004)

    Google Scholar 

  44. Pei, M., Ou, J.: Constitutive modeling of lead-free solders. In: Proceedings of International Symposium on Advanced Packaging Materials: Processes, Properties and Interface, pp. 44–49 (2005)

    Google Scholar 

  45. Rajib, R., Raghuram, V.P., Suresh, K.S.: Thermal Cycle Guidelines for Automotive, Computer, Portable and Implantable Medical Device Application. ASME, New York (2000)

    Google Scholar 

  46. Rao, S., Bath, J., Ladhar, H.: Lead-free manufacturing. In: Lead-Free Electronics, pp. 101–138. Wiley, New Jersey (2006)

    Google Scholar 

  47. Reinikainen, T.O., Marjamaki, P., Kivilahti, J.K.: Deformation characteristics and microstructural evolution of SnAgCu solder joints. Proc. EuroSimE 2005, 91–98 (2005)

    Google Scholar 

  48. Rodgers, B., Flood, B., Punch, J., Waldron, F.: Experimental determination and finite element model validation of the Anand viscoplasticity model constants for SnAgCu. Proc. EuroSimE 2005, 490–496 (2005)

    Google Scholar 

  49. Sarah, L.A., Notis, M.R., Chromik, R.R., Vinci, R.P.: Microstructural evolution in lead-free solder alloys: Part I. Cast Sn–Ag–Cu eutectic. J. Mater. Res. 19(5), 1417–1424 (2004)

    Article  Google Scholar 

  50. Sidhu, R.S., Deng, X., Chawla, N.: Microstructure characterization and creep behavior of Pb-free Sn-rich solder alloys: Part II. Creep behavior of bulk solder and solder/copper joints. Metall. Mater. Trans. A 39(2), 349–362 (2007)

    Article  Google Scholar 

  51. Su, Y.A., Tan, L.B., Tee, T.Y., Tan, V.B.C.: Rate-dependent properties of Sn–Ag–Cu based lead-free solder joints for WLCSP. Microelectron. Reliab. 50, 564–576 (2010)

    Article  Google Scholar 

  52. Suh, D., Kim, D.W., Liu, P., Kim, H., Weninger, J.A., Kumar, C.M., Prasad, A., Grimsley, B.W., Tejada, H.B.: Effects of Ag content on fracture resistance of Sn–Ag–Cu lead-free solders under high-strain rate conditions. Mater. Sci. Eng., A 460–461, 595–603 (2007)

    Article  Google Scholar 

  53. Tai, S.F., Ourdjini, A., Khong, Y.L., Venkatesh, V.C.: Tamin, M.N.: Effect of phosphorus content and solid state aging on intermetallic formation between lead-free Sn–Ag–Cu solder and electroless nickel/immersion gold under bump metallurgy. In: Proceedings of the 4th International Symposium on Electronic Materials and Packaging, pp. 267–270 (2002)

    Google Scholar 

  54. Tavernelli, J.F., Coffin Jr, L.F.: Experimental support for generalized equation predicting low cycle fatigue. Trans. ASME J. Basic Eng. 84(4), 533 (1962)

    Article  Google Scholar 

  55. Wang, Q., Liang, L.H., Chen, X.F., Weng, X.H., Yong, L., Irving, S., Luk, T.: Experimental determination and modification of Anand model constants for Pb-free material 95.5Sn4.0Ag0.5Cu. In: Proceedings of EuroSimE 2007, pp. 1–9 (2007)

    Google Scholar 

  56. Wiese, S., Schubert, A., Walter, H., Dudek, R., Feustel, F., Meusel, E., Michel, B.: Constitutive behavior of lead-free solders vs. lead-containing solders-experiments on bulk specimens and flip-chip joints. In: Proceedings of the 2001 Electronic Components and Technology Conference, pp. 890–902 (2001)

    Google Scholar 

  57. Wiese, S., Meusel, E., Wolter, K.-J.: Microstructural dependence of constitutive properties of eutectic SnAg and SnAgCu solders. In: Proceedings of the 2003 Electronic Components and Technology Conference, pp. 197–206 (2003)

    Google Scholar 

  58. Wiese, S., Rzepka, S.: Time-independent elastic–plastic behaviour of solder materials. Microelectron. Reliab. 44(12), 1893–1900 (2004)

    Article  Google Scholar 

  59. Wiese, S., Roellig, M., Mueller, M., Wolter, K.-J.: The effect of downscaling the dimensions of solder interconnects on their creep properties. Microelectron. Reliab. 48(6), 843–850 (2008)

    Article  Google Scholar 

  60. Wilde, J., Becker, K., Thoben, M., Blum, W., Jupitz, T., Wang, G., Cheng, Z.: Rate dependent constitutive relations based on Anand model for 92.5Pb5Sn2.5Ag solder. IEEE Trans. Adv. Packag. 23(3), 408–414 (2000)

    Article  Google Scholar 

  61. Wu, C.M.L., Lai, J.K.L., Wu, Y.: Thermal–mechanical interface crack behavior of a surface mount solder joint. Finite Elem. Anal. Des. 30(1–2), 19–30 (1998)

    Article  Google Scholar 

  62. Xiao, Q., Armstrong, W.D.: tensile creep and microstructural characterization of bulk Sn3.9Ag0.6Cu lead-free solder. J. Electron. Mater. 34(2), 196–211 (2005)

    Article  Google Scholar 

  63. Yan, D.J., Huang, D.J., Huang, C.Y., Wu, Z.H., Zhou, X.: The reliability research of lead-free solder joint of flip-chip. In: Proceedings of 7th International Conference on Electronic Packaging Technology, ICEPT’06, pp. 1–5 (2006)

    Google Scholar 

  64. Yeh, C.-L., Lai, Y.-S.: Transient fracturing of solder joints subjected to displacement-controlled impact loads. Microelectron. Reliab. 46(5–6), 885–895 (2006)

    Article  Google Scholar 

  65. Zahn, B.A.: solder joint fatigue life model methodology for 63Sn37Pb and 95.5Sn4Ag0.5Cu materials. In: Proceedings of the 2003 Electronic Components and Technology Conference, pp. 83–94 (2003)

    Google Scholar 

  66. Zhang, Q., Dasgupta, A., Haswell, P.: Viscoplastic constitutive properties and energy-partitioning model of lead-free Sn3.9Ag0.6Cu solder alloy. In: Proceedings of the 2003 Electronics Components and Technology Conference, 1862–1868 (2003)

    Google Scholar 

  67. Zhang, Q.: Isothermal mechanical and thermo-mechanical durability characterization of selected Pb-Free solders. Ph.D. Thesis, University of Maryland, College Park, Maryland (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd N. Tamin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tamin, M.N., Shaffiar, N.M. (2014). Mechanics of Solder Materials. In: Solder Joint Reliability Assessment. Advanced Structured Materials, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-00092-3_4

Download citation

Publish with us

Policies and ethics