Skip to main content

X-ray crystallographic studies of mammalian carbonic anhydrase isozymes

  • Chapter
The Carbonic Anhydrases

Part of the book series: EXS 90 ((EXS,volume 90))

Abstract

The year 1997 marked the 25th year of x-ray crystallographic studies of the mammalian carbonic anhydrase (CA) isozymes. These remarkable enzymes catalyze the reversible hydration of carbon dioxide (H2O + CO2 ⇔ HCO 3 + H+) via a zinc-hydroxide mechanism (Coleman, 1986; Silverman and Lindskog, 1988; Christianson and Fierke, 1996). To date, five of the seven known isozymes have yielded x-ray crystal structures: three cytosolic isozymes, human CAI (Kannan et al., 1984), human CA II ( Liljas et al., 1972; Eriksson et al., 1988; Halansson, 19929, and bovine CA III (Eriksson and Liljas, 1993); a membrane-associated isozyme, human CA IV (Stams et al., 1996); and a mitochondrial isozyme, murine CA V (Boriack-Sjodin et al., 1995). X-ray crystallographic studies of cytosolic isozymes I, II, and III have been previously reviewed by Eriksson and Liljas (1991). In this review, we extend structural comparisons within the CA family to include the membrane-associated isozyme IV and the mitochondrial isozyme V. We note that to date, the structures of two mammalian CA isozymes remain undetermined: CA VI, a secretory protein found in saliva, and CA VII, a cytosolic isozyme found primarily in salivary glands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agmon N (1995) The Grotthuss Mechanism. Chem Phys Lett 244: 456–462

    Article  CAS  Google Scholar 

  • Alexander RS, Kiefer LL, Fierke CA, Christianson DW (1993) Engineering the zinc binding site of human carbonic anhydrase II: Structure of the His-94 → Cys apoenzyme in a new crystalline form. Biochemistry 32: 1510–1518

    Article  PubMed  CAS  Google Scholar 

  • Alexander RS, Nair SK, Christianson DW (1991) Engineering the hydrophobic pocket of carbonic anhydrase II. Biochemistry 30: 11064–11072

    Article  PubMed  CAS  Google Scholar 

  • Bacon DA, Anderson WF (1988) A fast algorithm for rendering space-filling molecule pictures. J Molec Graphics 6: 219–220

    Article  Google Scholar 

  • Baird TT, Waheed A, Sly WS, Fierke CA (1997) Catalysis and inhibition of human carbonic anhydrase IV Biochemistry 36: 2669–2678

    Article  PubMed  CAS  Google Scholar 

  • Baldwin JJ, Ponticello GS, Anderson PS, Christy ME, Murcko MA, Randall WC, Schwam H, Sugrue MF, Springer JP, Gautheron P, Grove J, Mallorga P, Viader M, McKeever BM, Navia MA (1989) Thienothiopyran-2-sulfonamides: Novel topically active carbonic anhydrase inhibitors for the treatment of glaucoma. J Med Chem32: 2510–2513

    Article  PubMed  CAS  Google Scholar 

  • Boriack-Sjodin PA, Heck RW, Laipis PJ, Silverman DN, Christianson DW (1995) Structure determination of murine mitochondrial carbonic anhydrase V at 2.45 a resolution: Implications for catalytic proton transfer and inhibitor design. Proc Natl Acad Sci USA92: 10949–10953

    Article  PubMed  CAS  Google Scholar 

  • Chrisianson DW, Alexander RS (1989) Carboxylate-histidine-zinc interactions in protein structure and function. J Am Chem Soc 111: 6412–6419

    Article  Google Scholar 

  • Chrisianson DW, Fierke CA (1996) Carbonic anhydrase: evolution of the zinc binding site by nature and by design. Accounts in Chemical Research 29: 331–339

    Article  Google Scholar 

  • Coleman JE (1986) Is zinc hydroxide a required species in the mechanism of action on zinc enzymes? In: I Bertini, C Luchinat, W Maret, M Zeppezauer (eds): Zinc Enzymes. Birkhauser, Boston, 49–58

    Google Scholar 

  • Englund PT (1993) The structure and biosynthesis of glycosyl phosphatidylinositol protein anchor. Ann Rev Biochem 62: 121–138

    Article  PubMed  CAS  Google Scholar 

  • Engstrand C, Jonsson B-H, Lindskog S (1995) Catalytic and inhibitor-binding properties of some active-site mutants of human carbonic anhydrase I. European Journal of Biochemistry229: 696–702

    Article  PubMed  CAS  Google Scholar 

  • Eriksson AE, Jones TA, Liljas A (1988) Refined structure of human carbonic anhydrase II at 2.0 Å resolution. Proteins: Struct Funct Genet 4: 274–282

    Article  CAS  Google Scholar 

  • Eriksson AE, Liljas A (1993) Refined structure of bovine carbonic anhydrase III at 2.0 Å resolution. Proteins: Struct Funct Genet16: 29–42

    Article  CAS  Google Scholar 

  • Håkansson K, Carlsson M, Svensson LA, Liljas A (1992) Structure of native and apo caronic anhydrase II and some of its anion-ligand complexes. Journal of molecular biology227: 1192–1204

    Article  PubMed  Google Scholar 

  • Heck RW, Boriack-Sjodin PA, Qian MZ, Tu CK, Christianson DW, Laipis PJ, Silverman DN (1996) Structure-based design of an intramolecular proton transfer site in murine carbonic anhydrase V Biochemistry 35: 11605 –11611

    Article  PubMed  CAS  Google Scholar 

  • Heck RW, Tanhauser SM, Manda R, Tu CK, Laipis PJ, Silverman DN (1994) Catalytic properties of mouse carbonic anhydrase V J Biol Chem 269: 24742–24746

    PubMed  CAS  Google Scholar 

  • Herzberg O, Moult J (1991) Analysis of the steric strain in the polypeptide backbone of protein molecules. Proteins: Struct Funct Genet 11: 223–229

    Article  CAS  Google Scholar 

  • Huang C-C, Lesburg CA, Kiefer LL, Fierke CA, Christianson DW (1996) Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically alters catalysis and metal binding equilibration kinetics in carbonic anhydrase II. Biochemistry35: 3439–3446

    Article  PubMed  CAS  Google Scholar 

  • Ippolito JA, Christianson DW (1994) Structural consequences of redesigning a protein-zinc binding site. Biochemistry33: 15241–15249

    Article  PubMed  CAS  Google Scholar 

  • Jackman JE, Mertz KM, Fierke CA (1996) Disruption of the active site solvent network in carbonic anhydrase II decreases the efficiency of proton transfer. Biochemistry35: 16421–16428

    Article  PubMed  CAS  Google Scholar 

  • Jain A, Whitesides GM, Alexander RS, Christianson DW (1994) Identification of two hydrophobic patches in the active-site cavity of human carbonic anhydrase II by solution-phase and solid-state studies and their use in the development of tight-binding inhibitors. J Med Chem37: 2100–2105

    Article  PubMed  CAS  Google Scholar 

  • Jewell DA, Tu CK, Paranawithana SR, Tanhauser SM, LoGrasso PV, Laipis PJ, Silverman DN (1991) Enhancement of the catalytic properties of human carbonic anhydrase III by site-directed mutagenesis. Biochemistry30: 1484–1490

    Article  PubMed  CAS  Google Scholar 

  • Kannan KK, Ramanadham M, Jones TA (1984) Structure, refinement, and function of carbonic anhydrase isozymes: Refinement of human carbonic anhydrase I. In: RE Tashian, D Hewett-Emmett (eds). Biology and Chemistry of the Carbonic Anhydrases,New York Academy of Sciences, New York 49–60

    Google Scholar 

  • Kiefer LL, Fierke CA (1994) Functional characterization of human carbonic anhydrase II variants with altered zinc binding sites. Biochemistry 33: 15233–15240

    Article  PubMed  CAS  Google Scholar 

  • Kiefer LL, Paterno SA, Fierke CA (1995) Hydrogen bond network in the metal binding site of carbonic anhydrase enhances zinc affinity and catalytic efficiency. J Am Chem Soc 117: 6831 –6837

    Article  CAS  Google Scholar 

  • Kraulis PJ (1991) MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24: 946–950

    Article  Google Scholar 

  • Krebs JF, Fierke CA, Alexander RS, Christianson DW (1991) Conformational mobility of His-64 in the Thr-200 Ser mutant of human carbonic anhydrase II. Biochemistry 30: 9153–9160

    Article  PubMed  CAS  Google Scholar 

  • Krebs JF, Ippolito JA, Christianson DW, Fierke CA (1993a) Structural and functional importance of a conserved hydrogen bond network in human carbonic anhydrase II. J Biol Chem 268: 27458–27466

    CAS  Google Scholar 

  • Krebs IF, Rana F, Dluhy RA, Fierke CA (1993b) Kinetic and spectroscopic studies of hydrophobic amino acid substitutions in the hydrophobic pocket of human carbonic anhydrase II. Biochemistry 32: 4496–4505

    Article  CAS  Google Scholar 

  • Lesburg CA, Christianson DW (1995) X-Ray crystallographic studies of engineered hydrogen bond networks in a protein-zinc binding site. J Am Chem Soc 117: 6838–6844

    Article  CAS  Google Scholar 

  • Liang JY, Lipscomb WN (1990) Binding of substrate CO2 to the active site of human carbonic anhydrase II: a molecular dynamics study. Proc Natl Acad Sci USA 87: 3675–3679

    Article  PubMed  CAS  Google Scholar 

  • Liang Z, Xue Y, Behravan G, Jonsson BH, Lindskog S (1993) Importance of the conserved active-site residues Tyr7, G1u106 and Thr199 for the catalytic function of human carbonic anhydrase II. Eur J Biochem211: 821–827

    Article  PubMed  CAS  Google Scholar 

  • Liljas A, Kannan KK, Bergsten P-C, Waara I, Fridborg K, Strandberg B, Carlbom U, Jarup L, Lovgren S, Petef M (1972) Crystal structure of human carbonic anhydrase C. Nature New Biol235: 131–137

    PubMed  CAS  Google Scholar 

  • Lindskog S (1986) The structural basis of kinetic differences between carbonic anhydrase isozymes. In: I Bertini, C Luchinat, W Maret, M Zeppezauer (eds). Zinc Enzymes. Birkhauser, Boston, 307–316

    Google Scholar 

  • Lisanti MP, Rodriguez-Boulan E, Saltiel AR (1990) Emerging functional roles for the glycosylphosphatidylinositol membrane protein anchor. J Membr Biol117: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Lobaugh J, Voth GA (1996) The quantum dynamics of an excess proton in water. J Chem Phys 104: 2056–2069

    Article  CAS  Google Scholar 

  • LoGrasso PV, Tu CK, Jewell DA, Wynns GC, Laipis PJ, Silverman DN (1991) Catalytic enhancement of human carbonic anhydrase III by replacement of phenylalanine-198 with leucine. Biochemistry 30: 8463–8470

    Article  PubMed  CAS  Google Scholar 

  • MacArthur MW, Thorton JM (1991) Influence of proline residues on protein conformation. J Mol Biol 218: 397–412

    Article  PubMed  CAS  Google Scholar 

  • Merritt EA, Murphy MEP (1994) Raster3D version-2 – a program for photorealistic molecular graphics. Acta Crystallogr D50: 869–873

    CAS  Google Scholar 

  • Merz KM (1990) Insights into the function of the zinc hydroxide-Thr199-G1u106 hydrogen bonding network in carbonic anhydrases. J Mol Biol 214: 799–802

    Article  PubMed  CAS  Google Scholar 

  • Merz KM (1991) CO2 binding to human carbonic anhydrase II. J Am Chem Soc 113: 406–411

    Article  CAS  Google Scholar 

  • Nair SK, Christianson DW (1991) Unexpected pH-dependent conformation of His-64, the proton shuttle of carbonic anhydrase II. J Am Chem Soc 113: 9455–9458

    Article  CAS  Google Scholar 

  • Nair SK, Ludwig PA, Christianson DW (1994) Two-site binding of phenol in the active site of human carbonic anhydrase II: Structural implications for substrate association. J Am Chem Soc 116: 3659–3660

    Article  CAS  Google Scholar 

  • Ren XL, Jonsson BH, Lindskog S (1991) Some properties of site-specific mutants of human carbonic anhydrase II having active-site residues characterizing carbonic anhydrase III. Eur J Biochem 201: 417–420

    Article  PubMed  CAS  Google Scholar 

  • Scolnick LR, Christianson DW (1996) X-ray crystallographic studies of alanine-65 variants of carbonic anhydrase II reveal the structural basis of compromised proton transfer in catalysis. Biochemistry 35: 16429–16434

    Article  PubMed  CAS  Google Scholar 

  • Silverman DN, Lindskog S (1988) The catalytic mechanism of carbonic anhydrase: Implications of a rate-limiting protolysis of water. Acc Chem Res 21: 30–36

    Article  CAS  Google Scholar 

  • Simonsson I, Jonsson BH, Lindskog S (1982) Phenol, a competitive inhibitor of CO2 hydration catalyzed by carbonic anhydrase. Biochem Biophys Res Comm 108: 1406–1412

    Article  PubMed  CAS  Google Scholar 

  • Sly WS, Hu PY (1995) Human carbonic anhydrases and carbonic anhydrase deficiencies. Ann Rev Biochem 64: 375–401

    Article  PubMed  CAS  Google Scholar 

  • Smith GM, Alexander RS, Christianson DW, McKeever BM, Ponticello GS, Springer JP, Randall WC, Baldwin JJ, Habecker CN (1994) Positions of His-64 and a bound water in human carbonic anhydrase II upon binding three structurally related inhibitors. Protein Science 3: 118–125

    Article  PubMed  CAS  Google Scholar 

  • Stams T, Nair SK, Okuyama T, Waheed A, Sly WS, Christianson DW (1996) Crystal structure of the secretory form of membrane-associated human carbonic anhydrase IV at 2.8 Å resolution. Proc Natl Acad Sci USA 93: 13589–13594

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Jonsson B-H, Lindskog S (1975) The catalytic mechanism of carbonic anhydrase. Hydrogen-isotope effects on the kinetic parameters of the human C isoenzyme. Eur J Biochem 59: 253–259

    Article  PubMed  CAS  Google Scholar 

  • Stewart DE, Sarkar A, Wampler JE (1990) Occurrence and role of cis-peptide bonds in protein structures. J Mol Biol 214: 253–260

    Article  PubMed  CAS  Google Scholar 

  • Tu C, Silverman DN, Forsman C, Jonsson B-H, Lindskog S (1989) Role of histidine 64 in the catalytic mechanism of human carbonic anhydrase II studied with a site-specific mutant. Biochemistry 28: 7913–7918

    Article  PubMed  CAS  Google Scholar 

  • Tweedy NB, Nair SK, Paterno SA, Fierke CA, Christianson DW (1993) Structure and energetics of a non-proline cis-peptidyl linkage in a proline-202 → alanine carbonic anhydrase II variant. Biochemistry 32: 10944–10949

    Article  PubMed  CAS  Google Scholar 

  • Waheed A, Okuyama T, Heyduk T, Sly WS (1996) Carbonic anhydrase IV: Purification of a secretory form of the recombinant human enzyme and identification of the positions and importance of its disulfide bonds. Arch Biochem Biophys 333: 432–438

    Article  PubMed  CAS  Google Scholar 

  • Whitney PL, Briggle TV (1982) Membrane-associated carbonic anhydrase purified from bovine lung. J Biol Chem 257: 12 056–12 059

    CAS  Google Scholar 

  • Wistrand PJ, Knuuttila KG (1989) Renal membrane bound carbonic anhydrase. Purification and properties. Kidney 35: 851–859

    Article  CAS  Google Scholar 

  • Zhu SL, Sly WS (1990) Carbonic anhydrase IV from human lung. J Biol Chem 265: 8795–8801

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Stams, T., Christianson, D.W. (2000). X-ray crystallographic studies of mammalian carbonic anhydrase isozymes. In: Chegwidden, W.R., Carter, N.D., Edwards, Y.H. (eds) The Carbonic Anhydrases. EXS 90, vol 90. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8446-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8446-4_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9570-5

  • Online ISBN: 978-3-0348-8446-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics