Skip to main content

Carbonic anhydrases in striated muscle

  • Chapter
The Carbonic Anhydrases

Part of the book series: EXS 90 ((EXS,volume 90))

Abstract

The purpose of this chapter is to review the localization and function of various carbonic anhydrase (CA) isoforms in skeletal muscle. We will concentrate on those forms, for which it has been possible to develop clear functional concepts during the last few years. The isozymes, the presence of which has been established for mammalian skeletal muscle, are the following:

  1. (1)

    A membrane-bound carbonic anhydrase associated with the sarcoplasmic reticulum

  2. (2)

    A membrane-bound carbonic anhydrase (CA IV) bound to the exterior surface of the sarcolemma (GPI-anchored)

  3. (3)

    A cytosolic form, CA III, that essentially occurs in the slow, type I fibers

  4. (4)

    Another cytosolic form, CA II, whose presence has been demonstrated for fast or type IIb/IIa fibers in rabbit muscles, but which interestingly is absent in fast rat muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barclay JK (1987) Carbonic anhydrase III inhibition in normocapnic and hypercapnic contracting mouse soleus. Can J Physiol Pharmacol 65: 100–104

    Article  PubMed  CAS  Google Scholar 

  • Bar-Ilan A, Pessah NI, Maren TH (1986) Ocular penetration and hypotensive activity of the topically applied carbonic anhydrase inhibitor L-645,151. J Ocul Pharmacol 2: 109–120

    Article  PubMed  CAS  Google Scholar 

  • Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256: 1604–1607

    PubMed  CAS  Google Scholar 

  • Bruns W, Dermietzel R, Gros G (1986) Carbonic anhydrase in the sarcoplasmic reticulum of rabbit skeletal muscle. J Physiol 371: 351–364

    PubMed  CAS  Google Scholar 

  • Bruns W, Gros G (1992) Membrane-bound carbonic anhydrase in the heart. Am J Physiol 262: H577–H584

    PubMed  CAS  Google Scholar 

  • Cabiscol E, Levine RL (1996) The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation. Proc Natl Acad Sci 93: 4170–4174

    Article  PubMed  CAS  Google Scholar 

  • Chai YC, Jung CH, Lii CK, Ashraf SS, Hendrich S, Wolf B, Sies H, Thomas JA (1991) Identification of an abundant S-thiolated rat liver protein as carbonic anhydrase III; characterization of S-thiolation and dethiolation reactions. Arch Biochem Biophys 284: 270–278

    Article  PubMed  CAS  Google Scholar 

  • Chiesi M, Inesi G (1980) Adenosine 5´-triphosphate dependent fluxes of manganese and hydrogen ions in sarcoplasmic reticulum vesicles. Biochem 19: 2912–2918

    Article  CAS  Google Scholar 

  • CĂ´tĂ© CH, Riverin H, Barras MJ, Tremblay RR, FrĂ©mont P, Frenette J (1993) Effect of carbonic anhydrase III inhibition on substrate utilization and fatigue in rat soleus. Can J Physiol Pharmacol 71: 277–283

    Article  PubMed  Google Scholar 

  • CĂ´tĂ© CH, Perreault G, Frenette J (1997) Carbohydrate utilization in rat soleus muscle is in-fluenced by carbonic anhydrase III activity. Am J Physiol 273: R1211–R1218

    PubMed  Google Scholar 

  • Decker B, Sender S, Gros G (1996) Membrane-associated carbonic anhydrase IV in skeletal muscle: subcellular localization. Histochem Cell Biol 106: 405–411

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel R, Leibstein A, Siffert W, Zamboglou N, Gros G (1985) A fast screening method for histochemical localization of carbonic anhydrase. J Histochem Cytochem 33: 93–98

    Article  PubMed  CAS  Google Scholar 

  • FrĂ©mont P, Riverin H, Frenette J, Rogers PA, CĂ´tĂ© CH (1991) Fatigue and recovery of rat soleus muscle are influenced by inhibition of an intracellular carbonic anhydrase isoform. Am J Physiol 260: R615–R621

    PubMed  Google Scholar 

  • Geers C, Gros G, Gärtner A (1985) Extracellular carbonic anhydrase of skeletal muscle associated with the sarcolemma. J Appl Physiol 59: 548–558

    PubMed  CAS  Google Scholar 

  • Geers C, Gros G (1988) Carbonic anhydrase inhibition affects contraction of directly stimulated rat soleus. Life Sci 42: 37–45

    Article  PubMed  CAS  Google Scholar 

  • Geers C, Gros G (1990) Effects of carbonic anhydrase inhibitors on contraction, intracellular pH and energy-rich phosphates of rat skeletal muscle. J Physiol 423: 279–297

    PubMed  CAS  Google Scholar 

  • Geers C, KrĂĽger D, Siffert W, Schmid A, Bruns W, Gros G (1992) Carbonic anhydrase in skeletal and cardiac muscle from rabbit and rat. Biochem J 282: 165–171

    PubMed  CAS  Google Scholar 

  • Geers C, Benz K, Gros G (1995) Effects of carbonic anhydrase inhibitors on oxygen con-sumption and lactate accumulation in skeletal muscle. Comp Biochem Physiol 112A: 111–117

    Article  CAS  Google Scholar 

  • Geers C, Gros G (1995) Contractile function of papillary muscles with carbonic anhydrase inhibitors. Life Sci 57: 591–597

    Article  PubMed  CAS  Google Scholar 

  • Gros G, Dodgson SJ (1988) Velocity of CO2 exchange in muscle and liver. Ann Rev Physiol 50: 669–694

    Article  CAS  Google Scholar 

  • De Hemptinne A, Marrannes R, Vanheel B (1987) Surface pH and the control of intracellular pH in cardiac and skeletal muscle. Can J Physiol Pharmacol 65: 970–977

    Article  PubMed  Google Scholar 

  • Hidalgo C, Gonzalez ME, Lagos R (1983) Characterization of the Ca2+- or Me2+-ATPase of transverse tubule membranes isolated from rabbit skeletal muscle. J Biol Chem 258: 13 937–13 945

    PubMed  CAS  Google Scholar 

  • Itada N, Forster RE (1977) Carbonic anhydrase activity in intact red blood cells measured with 18O exchange. J Biol Chem 252: 3851–3890

    Google Scholar 

  • Juel C (1997) Lactate proton cotransport in skeletal muscle. Physiol Rev 77: 321–358

    PubMed  CAS  Google Scholar 

  • KnĂĽppel-Ruppert AS, Gros G, Harringer W, Kubis HP (2000) Immunochemical evidence for a unique GPI-anchored carbonic anhydrase isozyme in human cardiomyocytes. Am J Physiol (Heart Circ Physiol) 278: H 1335-H 1344

    Google Scholar 

  • Kodama T, Kurebayaski N, Ogawa Y (1980) Heat production and proton release during the ATP driven calcium uptake by fragmented sarcoplasmic reticulum from bullfrog and rabbit skeletal muscle. J Biochem 88: 1259–1265

    PubMed  CAS  Google Scholar 

  • Lii CK, Chai YC, Zhao W, Thomas JA, Hendrich S (1994) S-Thiolation and irreversible oxidation of sulfhydryls on carbonic anhydrase III during oxidative stress: a method for studying protein modification in intact cells and tissues. Arch Biochem Biophys 308: 231–239

    Article  PubMed  CAS  Google Scholar 

  • Lönnerholm G (1980) Carbonic anhydrase in rat liver and rabbit skeletal muscle; further evidence for the specificity of the histochemical cobolt-phosphate method of Hansson. J Histochem Cytochem 28: 427–433

    Article  PubMed  Google Scholar 

  • Madeira VMC (1980) Proton movements across the membranes of sarcoplasmic reticulum during the uptake of calcium ions. Arch Biochem Biophys 200: 319–325

    Article  PubMed  CAS  Google Scholar 

  • Maren TH, Jankowska L, Sanyal G, Edelhauser HF (1983) The transcorneal permeability of sulfonamide carbonic anhydrase inhibitors and their effect on aequeous humor secretion. Exp Eye Res 36: 457–480

    Article  PubMed  CAS  Google Scholar 

  • Meissner G (1981) Calcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum vesicles. J Biol Chem 256: 636–643

    PubMed  CAS  Google Scholar 

  • Paranawithana SR, Tu CK, Laipis PJ, Silverman DN (1990) Enhancement of the catalytic activity of carbonic anhydrase III by phosphates. J Biol Chem 265: 22 270–22 274

    CAS  Google Scholar 

  • RidderstrĂĄle Y (1979) Observations on the localization of carbonic anhydrase in muscle. Acta Physiol Scand 106: 239–240

    Article  PubMed  Google Scholar 

  • Riley DA, Ellis S, Bain J (1982) Carbonic anhydrase activity in skeletal muscle fiber types, axons, spindles, and capillaries of rat soleus and extensor digitorum longus muscles. J Histochem Cytochem 30: 1275–1288

    Article  PubMed  CAS  Google Scholar 

  • Romanowski F, Schierenbeck J, Gros G (1992) Facilitated COz diffusion in various striated muscles. In: K Frank, M Kessler (eds): Quantitative Spectroscopy in Tissue. Frankfurt/Main, 205–211

    Google Scholar 

  • Rosemblatt M, Hidalgo C, Vergara C, Ikemoto N (1981) Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle. J Biol Chem 256: 8140–8148

    PubMed  CAS  Google Scholar 

  • Rowlett RS, Gargiulo NJ, Santoli FA, Jackson JM, Corbett AH (1991) Activation and inhibition of bovine carbonic anhydrase III by dianions. J Biol Chem 266: 933–941

    PubMed  CAS  Google Scholar 

  • Saarikoski J, Kaila K (1992) Simultaneous measurement of intracellular and extracellular carbonic anhydrase activity in intact muscle fibres. Pfliigers Arch 421: 357–363

    Article  Google Scholar 

  • Sender S, Gros G, Waheed A, Hageman GS, Sly WS (1994) Immunohistochemical localization of carbonic anhydrase IV in capillaries of rat and human skeletal muscle. J Histochem Cytochem 42: 1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Sender S, Decker B, Fenske CD, Sly WS, Carter ND, Gros G (1998) Localization of carbonic anhydrase IV in rat and human heart muscle. J Histochem Cytochem 46: 855–861

    Article  PubMed  CAS  Google Scholar 

  • Shelton JB, Chegwidden WR (1988) Activation of carbonic anhydrase III by phosphate. Bio-chem Soc Trans 16: 853–854

    CAS  Google Scholar 

  • Shelton JB, Chegwidden WR (1996) Modification of carbonic anhydrase III activity by phos-phate and phosphorylated metabolites. Comp Biochem Physiol 114A: 283–289

    Article  CAS  Google Scholar 

  • Shoshan V, MacLennan DH, Wood DS (1981) A proton gradient controls a calcium release channel in sarcoplasmic reticulum. Proc Natl Acad Sci 78: 4828–4832

    Article  PubMed  CAS  Google Scholar 

  • Siffert W, Gros G (1982) Carbonic anhydrase C in white skeletal muscle tissue. Biochem J 205: 559–566

    PubMed  CAS  Google Scholar 

  • Somlyo AV, Gonzalez-Serratos H, Shuman H, McClellan G, Somlyo AP (1981) Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study. J Cell Biol 90: 577–594

    Article  PubMed  CAS  Google Scholar 

  • Tu CK, Paranawithana SR, Jewell DA, Tanhauser SM, LoGrasso PV, Wynns GC, Laipis PJ, Silverman DN (1990) Buffer enhancement of proton transfer in catalysis by human carbonic anhydrase III. Biochem 29: 6400–6405

    Article  CAS  Google Scholar 

  • Vandenberg JI, Carter ND, Bethell HWL, Nogradi A, RidderstrĂĄle Y, Metcalfe C, Grace AA (1996) Carbonic anhydrase and cardiac pH regulation. Am J Physiol 271: C1838–C1846

    PubMed  CAS  Google Scholar 

  • Waheed A, Zhu XL, Sly WS, Wetzel P, Gros G (1992) Rat skeletal muscle membrane associated carbonic anhydrase is 39-kDa, glycosylated, GPI-anchored CA IV Arch Biochem Biophys 294: 550–556

    Article  PubMed  CAS  Google Scholar 

  • Wetzel P, Liebner T, Gros G (1990) Carbonic anhydrase inhibition and calcium transients in soleus fibers. FEBS Lett 267: 66–70

    Article  PubMed  CAS  Google Scholar 

  • Wetzel P, Gros G (1998) Inhibition and kinetic properties of membrane-bound carbonic anhydrase in rabbit skeletal muscles. Arch Biochem Biophys 356: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Wetzel P, Hasse A, Papadopoulos S, Voipio J, Kaila K, Gros G. Extracellular (but not intracellular) carbonic anhydrase activity facilitates lactic acid transport in rat skeletal muscle fibres. J Physiol (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Wetzel, P., Gros, G. (2000). Carbonic anhydrases in striated muscle. In: Chegwidden, W.R., Carter, N.D., Edwards, Y.H. (eds) The Carbonic Anhydrases. EXS 90, vol 90. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8446-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8446-4_18

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9570-5

  • Online ISBN: 978-3-0348-8446-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics