Skip to main content

The catalytic mechanism of mammalian carbonic anhydrases

  • Chapter
The Carbonic Anhydrases

Part of the book series: EXS 90 ((EXS,volume 90))

Abstract

The physiological reaction catalyzed by carbonic anhydrase (CA) involves only six atoms at the substrate level: CO2 + H2O ↔ HCO 3 + H+ Despite this simplicity, some aspects of the catalytic mechanism have been elusive, and it is not until recently that a rather detailed picture has emerged of the molecular events taking place in the enzymic active site during a catalytic cycle. These advances are the results of the application of a combination of techniques, such as x-ray crystallography, site-specific mutagenesis, enzyme kinetics and computer simulations. Most of this work concerns the cytosolic high-activity isozyme, human CA II (HCA II), but available evidence indicates that all CAs of the animal type (α-CAs) share the same general mechanism, usually called the zinc-hydroxide mechanism (Silverman and Lindskog, 1988; Silverman, 1991; Lindskog and Liljas, 1993; Liljas et al., 1994; Lindskog 1997). Thus, it is believed that the central catalytic step in all a-CAs is a reaction between CO2 and a zinc-bound OH ion yielding a coordinated HCO 3 ion, which is displaced from the metal ion by a water molecule. The subsequent regeneration of OH involves the transfer of H+ from this zinc-bound water molecule to the bulk solution. In this chapter, we will focus on these events as they occur in the active site of HCA II, but specific features of the mechanisms of other mammalian CA isozymes will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander RS, Nair SK, Christianson DW (1991) Engineering the hydrophobic pocket of carbonic anhydrase II. Biochemistry 30: 11 064–11 072

    Article  CAS  Google Scholar 

  • Baciou L, Michel H (1995) Interruption of the water chain in the reaction center from Rhodobacter spheroides reduces the rates of the proton uptake and of the second electron transfer to QB. Biochemistry 34: 7967–7972

    Article  PubMed  CAS  Google Scholar 

  • Baird TT, Waheed A, Okuyama T, Sly WS, Fierke CA (1997) Catalysis and inhibition of human carbonic anhydrase IV. Biochemistry 36: 2669–2678

    Article  PubMed  CAS  Google Scholar 

  • Behravan G, Jonsson B-H, Lindskog S (1990) Fine tuning of the catalytic properties of carbonic anhydrase. Studies of a Thr200 → His200 variant of human isozyme II. Eur J Biochem 190: 351–357

    Article  PubMed  CAS  Google Scholar 

  • Behravan G, Jonsson B-H, Lindskog S (1991) Fine tuning of the catalytic properties of human carbonic anhydrase II. Effects of varying active site residue 200. Eur J Biochem 195: 393–396

    Article  PubMed  CAS  Google Scholar 

  • Bergenhem NCH, Sait SSJ, Eddy RL, Shows TB, Tashian RE (1995) Assignment of the gene for human carbonic anhydrase VIII (CA 8) to chromosome 8q11 → q12. Cytogenet Cell Genet 71: 299–300

    Article  PubMed  CAS  Google Scholar 

  • Boriack-Sjodin PA, Heck RW, Laipis PJ, Silverman DN, Christianson DW (1995) Structure determination of murine mitochondrial carbonic anhydrase V at 2.45-A resolution: Implications for catalytic proton transfer and inhibitor design. Proc Natl Acad Sci USA 92: 10 949–10 953

    Article  PubMed  CAS  Google Scholar 

  • Cabiscol E, Levine RL (1996) The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation. Proc Natl Acad Sci USA 93: 4170–4174

    Article  PubMed  CAS  Google Scholar 

  • Campbell ID, Lindskog S, White AI (1974) A study of the histidine residues of human carbonic anhydrase B using 270 MHz proton magnetic resonance. J Mol Biol 90: 469–489

    Article  PubMed  CAS  Google Scholar 

  • Campbell ID, Lindskog S, White AI (1977) A study of the histidine residues of human carbonic anhydrase C using 270 MHz proton magnetic resonance. J Mol Biol 98: 597–614

    Article  Google Scholar 

  • Carter ND, Hewett-Emmett D, Jeffery S, Tashian RE (1981) Testosterone-induced, sulfonamide-resistant carbonic anhydrase isozyme of rat liver is indistinguishable from skeletal muscle carbonic anhydrase III. FEBS Lett 128: 114–118

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Tu CK, LoGrasso PV, Laipis PJ, Silverman DN (1993) Interaction and influence of phenylalanine-198 and threonine-199 on catalysis by human carbonic anhydrase III. Biochemistry 32: 7861–7865

    Article  PubMed  CAS  Google Scholar 

  • Christianson DW, Fierke CA (1996) Carbonic anhydrase: Evolution of the zinc binding site by nature and by design. Acc Chem Res 29: 331–339

    Article  CAS  Google Scholar 

  • Earnhardt JN, Qian M, Tu CK, Lakkis MM, Bergenhem NCH, Laipis PJ, Tashian RE, Silverman DN (1998) Catalytic properties of murine carbonic anhydrase VII. Biochemistry 37: 10837–10845

    Article  PubMed  CAS  Google Scholar 

  • Eigen M (1964) Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Angew Chemie Int Ed Engl 3: 1–72

    Article  Google Scholar 

  • Elleby B, Sjöblom B, Lindskog S (1999) Changing the efficiency and specificity of the esterase activity of human carbonic anhydrase II by site-specific mutagenesis. Eur J Biochem 262: 516–521

    Article  PubMed  CAS  Google Scholar 

  • Engberg P, Lindskog S (1986) Activation of bovine muscle carbonic anhydrase by modification of thiol groups. Eur J Biochem 156: 407–412

    Article  PubMed  CAS  Google Scholar 

  • Engberg P, Millqvist E, Pohl G, Lindskog S (1985) Purification and some properties of carbonic anhydrase from bovine skeletal muscle. Arch Biochem Biophys 241: 628–638

    Article  PubMed  CAS  Google Scholar 

  • Engstrand C, Forsman C, Liang Z, Lindskog S (1992) Proton transfer roles of lysine 64 and glutamic acid 64 replacing histidine 64 in the active site of human carbonic anhydrase II. Biochim Biophys Acta 1122: 321–326

    Article  PubMed  CAS  Google Scholar 

  • Engstrand C, Jonsson B-H, Lindskog S (1995) Catalytic and inhibitor-binding properties ofsome active-site mutants of human carbonic anhydrase I. Eur J Biochem 229: 696–702

    Article  PubMed  CAS  Google Scholar 

  • Eriksson AE, Jones TA, Liljas A (1988a) Refined structure of human carbonic anhydrase II at 2.0 Å resolution. Proteins Struct Funct Genet 4: 274–282

    Article  CAS  Google Scholar 

  • Eriksson AE, Kylsten PM, Jones TA, Liljas A (1988b) Crystallographic studies of inhibitor binding sites in human carbonic anhydrase II: A pentacordinated binding of the SCN-ion to the zinc at high pH. Proteins Struct Funct Genet 4: 283–293

    Article  CAS  Google Scholar 

  • Eriksson AE, Liljas A (1993) Refined structure of bovine carbonic anhydrase III at 2.0 Å resolution. Proteins Struct Funct Genet 16: 29–42

    Article  PubMed  CAS  Google Scholar 

  • Feldstein JB, Silverman DN (1984) Purification and characterization of carbonic anhydrase from the saliva of the rat. J Biol Chem 259: 5447–5453

    PubMed  CAS  Google Scholar 

  • Fierke CA, Calderone TL, Krebs JF (1991) Functional consequences of engineering the hydrophobic pocket of carbonic anhydrase II. Biochemistry 30: 11 054–11 063

    Article  CAS  Google Scholar 

  • Forsman C, Behravan G, Jonsson BH, Liang Z, Lindskog S, Ren X, Sandström J, Wallgren K (1988) Histidine 64 is not required for high CO2 hydration activity of human carbonic anhydrase II. FEBS Lett 229: 360–362

    Article  PubMed  CAS  Google Scholar 

  • Forsman C, Jonson BH, Lindskog S (1983) Proton nuclear magnetic resonance studies of histidines in horse carbonic anhydrase I. Biochim Biophys Acta 748: 300–307

    Article  PubMed  CAS  Google Scholar 

  • Geers C, Gros G (1991) Muscle carbonic anhydrases. Function in muscle contraction and in the homeostasis of muscle pH and pCO2. In: SJ Dodgson, RE Tashian, G Gros, ND Carter (eds): The Carbonic Anhydrases: Cellular Physiology and Molecular Genetics, Plenum, New York, 227–240

    Google Scholar 

  • Håkansson K, Carlsson M, Svensson LA, Liljas A (1992) Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. J Mol Biol 227: 1192–1204

    Article  PubMed  Google Scholar 

  • Håkansson K, Wehnert A (1992) Structure of cobalt carbonic anhydrase complexed with bicarbonate. J Mol Biol 228: 1212–1218

    Article  PubMed  Google Scholar 

  • Heck RW, Boriack-Sjodin PA, Qian MZ, Tu CK, Christianson DW, Laipis PJ, Silverman DN (1996) Structure-based design of an intramolecular proton transfer site in murine carbonic anhydrase V. Biochemistry 35: 11 605–11 611

    Article  CAS  Google Scholar 

  • Heck RW, Tanhauser SM, Manda R, Tu C, Laipis PJ, Silverman DN (1994) Catalytic properties of mouse carbonic anhydrase V. J Biol Chem 269: 24 742–24 746

    CAS  Google Scholar 

  • Hewett-Emmett D, Tashian RE (1996) Functional diversity, conservation, and convergence in the evolution of α-,β-, and γ-carbonic anhydrase gene families. Mol Phylogenet Evol 5: 50–77

    Article  PubMed  CAS  Google Scholar 

  • Holmes RS (1977) A comparative electrophoretic analysis of mammalian carbonic anhydrase is ozymes: evidence for a third isozyme in red skeletal muscles. Comp Biochem Physiol 57B: 117–120

    Google Scholar 

  • Hurt JD, Tu CK, Laipis PJ, Silverman DN (1997) Catalytic properties of murine carbonic anhydrase IV. J Biol Chem 272: 13512–13518

    Article  PubMed  CAS  Google Scholar 

  • Jackman JE, Merz KM, Fierke CA (1996) Disruption of the active site solvent network in carbonic anhydrase II decreases the efficiency of proton transfer. Biochemistry 35: 16 421–16 428

    Article  CAS  Google Scholar 

  • Jewell DA, Tu C, Paranawithana SR, Tanhauser SM, LoGrasso PV, Laipis PJ, Silverman DN (1991) Enhancement of the catalytic properties of human carbonic anhydrase III by site-directed mutagenesis. Biochemistry 30: 1484–1490

    Article  PubMed  CAS  Google Scholar 

  • Jonsson BH, Steiner H, Lindskog S (1976) Participation of buffer in the catalytic mechanism of carbonic anhydrase. FEBS Lett 64: 310–314

    Article  PubMed  CAS  Google Scholar 

  • Jönsson BM, Håkansson K, Liljas A (1993) The structure of human carbonic anhydrase II in complex with bromide and azide. FEBS Lett 322: 186–190

    Article  PubMed  Google Scholar 

  • Kato K (1990) Sequence of a novel carbonic anhydrase-related polypeptide and its exclusive presence in Purkinje cells. FEBS Lett 272: 137–140

    Article  Google Scholar 

  • Khalifah RG (1971) The carbon dioxide hydration activity of carbonic anhydrase. I. Stopflow kinetic studies on the native human isoenzymes B and C. J Biol Chem 246: 2561–2573

    PubMed  CAS  Google Scholar 

  • Khalifah RG (1973) Carbon dioxide hydration activity of carbonic anhydrase: paradoxical con-sequences of the unusually rapid catalysis. Proc Nati Acad Sci USA 70: 1986–1989

    Article  CAS  Google Scholar 

  • Kiefer LL, Fierke CA (1994) Functional characterization of human carbonic anhydrase II variants with altered zinc binding sites. Biochemistry 33: 15233–15240

    Article  PubMed  CAS  Google Scholar 

  • Kiefer LL, Paterno SA, Fierke CA (1995) Hydrogen bond network in the metal binding site of carbonic anhydrase enhances zinc affinity and catalytic efficiency. J Am Chem Soc 117: 6831–6837

    Article  CAS  Google Scholar 

  • Koester MK, Pullan LM, Noltmann EA (1981) The p-nitrophenyl phosphatase activity of muscle carbonic anhydrase. Arch Biochem Biophys 211: 632–642

    Article  PubMed  CAS  Google Scholar 

  • Koester MK, Register AM, Noltmann EA (1977) Basic muscle protein, a third genetic locus iso-enzyme of carbonic anhydrase? Biochem Biophys Res Commun 76: 196–204

    Article  PubMed  CAS  Google Scholar 

  • Kogut KA, Rowlett RS (1987) A comparison of the mechanisms of CO2 hydration by native and CO(II)-substituted carbonic anhydrase II. J Biol Chem 262: 16417–16424

    PubMed  CAS  Google Scholar 

  • Krebs JF, Fierke CA (1993) Determinants of the catalytic activity and stability of carbonic anhydrase II as revealed by random mutagenesis. J Biol Chem 268: 948–954

    PubMed  CAS  Google Scholar 

  • Krebs JF, Fierke CA, Alexander RS, Christianson DW (1991) Conformational mobility of His 64 in the Thr 200 → Ser mutant of human carbonic anhydrase II. Biochemistry 30: 9153–9160

    Article  PubMed  CAS  Google Scholar 

  • Krebs JF, Ippolito JA, Christianson DW, Fierke CA (1993a) Structural and functional importance of a conserved hydrogen bond network in human carbonic anhydrase II. J Biol Chem 268: 27458–27466

    CAS  Google Scholar 

  • Krebs JF, Rana F, Dluhy RA, Fierke CA (1993b) Kinetic and spectroscopic studies of hydrophilic amino acid substitutions in the hydrophobic pocket of human carbonic anhydrase II. Biochemistry 32: 4496–4505

    Article  CAS  Google Scholar 

  • Kresge AJ, Silverman DN (1999) Application of Marcus rate theory to proton transfer in enzyme-catalyzed reactions. Methods Enzymol 308: 276–297

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Kannan KK (1994) Enzyme-substrate interactions. Structure of human carbonic anhydrase I complexed with bicarbonate. J Mol Biol 241: 226–232

    Article  PubMed  CAS  Google Scholar 

  • Liang J-Y, Lipscomb WN (1990) Binding of substrate CO2 to the active site of human carbonic anhydrase II: A molecular dynamics study. Proc Natl Acad Sci USA 87: 3675–3679

    Article  PubMed  CAS  Google Scholar 

  • Liang Z, Jonsson B-H, Lindskog S (1993a) Proton transfer in the catalytic mechanism of carbonic anhydrase. Effects of placing histidine residues at various positions in the active site of human isoenzyme II. Biochim Biophys Acta 1203: 142–146

    Article  CAS  Google Scholar 

  • Liang Z, Xue Y, Behravan G, Jonsson B-H, Lindskog S (1993b) Importance of the conserved active-site residues Tyr7, Glu106 and Thr199 for the catalytic function of human carbonic anhydrase II. Eur J Biochem 211: 821–827

    Article  CAS  Google Scholar 

  • Liljas A, Håkansson K, Jonsson BH, Xue Y (1994) Inhibition and catalysis of carbonic anhydrase. Recent crystallographic analyses. Eur J Biochem 219: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Lindahl M, Svensson LA, Liljas A (1993) Metal poison inhibition of carbonic anhydrase. Proteins Struct Funct Genet 15: 177–182

    Article  PubMed  CAS  Google Scholar 

  • Lindskog S (1984) The kinetic mechanisms of human carbonic anhydrases I and II. A computer approach. J Mol Cat (Switz) 23: 357–368

    Article  CAS  Google Scholar 

  • Lindskog S (1997) Structure and mechanism of carbonic anhydrase. Pharmacol Ther 74: 1–20

    Article  PubMed  CAS  Google Scholar 

  • Lindskog S, Coleman JE (1973) The catalytic mechanism of carbonic anhydrase. Proc Natl Acad Sci USA 70: 2505–2508

    Article  PubMed  CAS  Google Scholar 

  • Lindskog S, Liljas A (1993) Carbonic anhydrase and the role of orientation in catalysis. Curr Opin Struct Biol 3: 915–920

    Article  CAS  Google Scholar 

  • LoGrasso PV, Tu CK, Chen X, Taoka S, Laipis PJ, Silverman DN (1993) Influence of amino acid replacement at position 198 on catalytic properties of zinc-bound water in human carbonic anhydrase III. Biochemistry 32: 5786–5791

    Article  PubMed  CAS  Google Scholar 

  • LoGrasso PV, Tu C, Jewell DA, Wynns GC, Laipis PJ, Silverman DN (1991) Catalytic enhancement of human carbonic anhydrase III by replacement of phenylalanine-198 with leucine. Biochemistry 30: 8463–8470

    Article  PubMed  CAS  Google Scholar 

  • Lynch CJ, Brennen WA, Vary TC, Carter N, Dodgson SJ (1993) Carbonic anhydrase III in obese Zucker rats. Am J Physiol 264: E621–E630

    PubMed  CAS  Google Scholar 

  • Maren TH, Sanyal G (1983) The activity of sulfonamides and anions against the carbonic anhydrases of animals, plants, and bacteria. Annu Rev Pharmacol Toxicol 23: 439–459

    Article  PubMed  CAS  Google Scholar 

  • Merz KM (1990) Insights into the function of the zinc hydroxide-Thr199-G1u106 hydrogen bonding network in carbonic anhydrases. J Mol Biol 214: 799–802

    Article  PubMed  CAS  Google Scholar 

  • Merz KM (1991a) Determination of pKas of ionizable groups in proteins: The pKa of Glu 7 and 35 in hen egg white lysozyme and Glu 106 in human carbonic anhydrase II. J Am Chem Soc 113: 3572–3575

    Article  CAS  Google Scholar 

  • Merz KM (199lb) CO2 binding to human carbonic anhydrase II. J Am Chem Soc 113: 406–411

    Article  Google Scholar 

  • Mitchell DM, Fetter JR, Mills DA, Ädelroth P, Pressler MA, Kim Y, Aasa R, Brzezinsky P, Malmström BG, Alben JO et al (1996) Site-directed mutagenesis of residues lining a puta-tive proton transfer pathway in cytochrome c oxidase from Rhodobacter sphaeroides. Biochemistry 35: 13089–13093

    Article  CAS  Google Scholar 

  • Nair SK, Christianson DW (1991) Unexpected pH-dependent conformation of His 64, the proton shuttle of carbonic anhydrase II. J Am Chem Soc 113: 9455–9458

    Article  CAS  Google Scholar 

  • Opaysky R, Pastorekova S, Zelnik V, Gibadulinova A, Stanbridge EJ, Zavada J, Kettmann R, Pastorek J (1996) Human MN/CA9 gene, an novel member of the carbonic anhydrase family: Structure and exon to protein domain relationships. Genomics 33: 480–487

    Article  Google Scholar 

  • Pastorek J, Pastorekova S, Callebaut I, Mornon JP, Zelnik V, Opaysky R, Zatòvicova M, Liao S, Portetelle D, Stanbridge EJ et al (1994) Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helixloop-helix DNA binding segment. Oncogene 9: 2877–2888

    PubMed  CAS  Google Scholar 

  • Pocker Y, Bjorkquist DW (1977) Comparative studies of bovine carbonic anhydrase in H2O and D2O. Stopped-flow studies of the kinetics of interconversion of CO2 and HCO 3 . Biochemistry 16: 5698–5707

    Article  PubMed  CAS  Google Scholar 

  • Pocker Y, Sarkanen S (1978) Carbonic anhydrase: structure, catalytic versatility, and inhibition. Advan Enzymol 47: 149–274

    CAS  Google Scholar 

  • Pocker Y, Stone JT (1967) The catalytic versatility of erythrocyte carbonic anhydrase. III. Kinetic studies of the enzyme-catalyzed hydrolysis of p-nitrophenyl acetate. Biochemistry 6: 668–678

    Article  PubMed  CAS  Google Scholar 

  • Pocker Y, Storm DR (1968) The catalytic versatility of erythrocyte carbonic anhydrase. IV. Kinetic studies of enzyme-catalyzed hydrolyses of p-nitrophenyl esters. Biochemistry 7: 1202–1214

    Article  PubMed  CAS  Google Scholar 

  • Pullan LM, Noltmann EA (1985) Specific arginine modification at the phosphatase site of muscle carbonic anhydrase. Biochemistry 24: 635–640

    Article  PubMed  CAS  Google Scholar 

  • Ren X, Jonsson BH, Millqvist E, Lindskog S (1988a) A comparison of the kinetic properties of native bovine muscle carbonic anhydrase and an activated derivative modified thiol groups. Biochim BiophysActa 953: 79–85

    Article  CAS  Google Scholar 

  • Ren X. Jonsson B-H, Lindskog S (1991) Some properties of site-specific mutants of human carbonic anhydrase II having active-site residues characterizing carbonic anhydrase III. Eur J Biochem 201: 417–420

    Article  PubMed  CAS  Google Scholar 

  • Ren X, Lindskog S (192) Buffer dependence of CO2 hydration catalyzed by human carbonic anhydrase I. Biochim BiophysActa 1120: 81–86

    Google Scholar 

  • Ren X, Sandstrom A, Lindskog S (1988b) Kinetics, anion binding and mechanism of Co(II)substituted bovine muscle carbonic anhydrase. Eur J Biochem 173: 73–78

    Article  CAS  Google Scholar 

  • Ren X, Tu C, Laipis PJ, Silverman DN (1995) Proton transfer by histidine 67 in site-directed mutants of human carbonic anhydrase III. Biochemistry 34: 8492–8498

    Article  PubMed  CAS  Google Scholar 

  • Rowlett RS (1984) The reversible inhibition of carbonic anhydrase II: computer simulations of a proposed mechanism of action. J Protein Chem 3: 369–393

    Article  CAS  Google Scholar 

  • Rowlett RS, Silverman DN (1982) Kinetics of the protonation of buffer and hydration of CO2 catalyzed by human carbonic anhydrase II. J Am Chem Soc 104: 6737–6741

    Article  CAS  Google Scholar 

  • Scolnick LR, Christianson DW (1996) X-ray crystallography studies of alanine-65 variants of carbonic anhydrase II reveal the structural basis of compromised proton transfer in catalysis. Biochemistry 35: 16429 –16434

    Article  PubMed  CAS  Google Scholar 

  • Silverman DN (1991) The catalytic mechanism of carbonic anhydrase. Can J Bot 69: 1070–1078.

    Article  CAS  Google Scholar 

  • Silverman DN, Lindskog S (1988) The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting protolysis of water. Acc Chem Res 21: 30–36

    Article  Google Scholar 

  • Silverman DN, Tu CK, Chen X, Tanhauser SM, Kresge AJ, Laipis PJ (1993) Rate-equilibria relationships in intramolecular proton transfer in human carbonic anhydrase III. Biochemistry 32: 10 757–10 762

    Article  CAS  Google Scholar 

  • Silverman DN, Tu CK, Lindskog S, Wynns GC (1979) Rate of exchange of water from the active site of human carbonic anhydrase C. J Am Chem Soc 101: 6734–6740

    Article  CAS  Google Scholar 

  • Simonsson I, Jonsson BH, Lindskog S (1979) A 13C nuclear magnetic resonance study of CO2/ HCO 3 exchange catalyzed by human carbonic anhydrase C at chemical equilibrium. Eur J Biochem 93: 409–417

    Article  PubMed  CAS  Google Scholar 

  • Simonsson I, Jonsson BH, Lindskog S (1982) A 13C nuclear magnetic resonance study of CO2/HCO 3 exchange catalyzed by human carbonic anhydrase I. Eur J Biochem 129: 165–169

    Article  PubMed  CAS  Google Scholar 

  • Sjöblom B, Elleby B, Wallgren K, Jonsson B-H, Lindskog S (1996) Two point mutations convert a catalytically inactive carbonic anhydrase-related protein (CARP) to an active enzyme. FEBS Lett 398: 322–325

    Article  PubMed  Google Scholar 

  • Stams T, Nair SK, Okuyama T, Waheed A, Sly WS, Christianson DW (1996) Crystal structure of the secretory form of membrane-associated human carbonic anhydrase IV at 2.8-A resolution. Proc Natl Acad Sci USA 13589–13594

    Google Scholar 

  • Steiner H, Jonsson BH, Lindskog S (1975) The catalytic mechanism of carbonic anhydrase: hydrogen isotope effects on the kinetic parameters of the human C isoenzyme. Eur J Biochem 59: 253–259

    Article  PubMed  CAS  Google Scholar 

  • Tamai S, Waheed A, Cody LB, Sly WS (1996) Gly→63 Gln substitution adjacent to His-64 in rodent carbonic anhydrase IVs largely explains their reduced activity. Proc Natl Acad Sci USA 93: 13647–13652

    Article  PubMed  CAS  Google Scholar 

  • Tashian RE (1989) The carbonic anhydrases: Widening perspectives on their evolution, expression and function: Bioessays 10: 186–192

    Article  PubMed  CAS  Google Scholar 

  • Thorslund A, Lindskog S (1967) Studies of the esterase activity and the anion inhibition of bovine zinc and cobalt carbonic anhydrase. Eur J Biochem 3: 117–123

    Article  PubMed  CAS  Google Scholar 

  • Tu CK, Chen X, Ren X, LoGrasso PV, Jewell DA, Laipis PJ, Silverman DN (1994) Interactions of active-site residues and catalytic activity of human carbonic anhydrase III. J Biol Chem 269: 23002–23006

    PubMed  CAS  Google Scholar 

  • Tu CK, Paranawithana SR, Jewell DA, Tanhauser SM, LoGrasso PV, Wynns GC, Laipis PJ, Silverman DN (1990) Buffer enhancement of proton transfer in catalysis by human carbonic anhydrase III. Biochemistry 29: 6400–6405

    Article  PubMed  CAS  Google Scholar 

  • Tu CK, Sanyal G, Wynns GC, Silverman DN (1983) The pH dependence of the hydration of CO2 catalyzed by carbonic anhydrase III from skeletal muscle of the cat. J Biol Chem 258: 8867–8871

    PubMed  CAS  Google Scholar 

  • Tu CK, Silverman DN, Forsman C, Jonsson B-H, Lindskog S (1989) The role of histidine 64 in the catalytic mechanism of human carbonic anhydrase II studies with a site-specific mutant. Biochemistry 28: 7913–7918

    Article  PubMed  CAS  Google Scholar 

  • Tu CK, Thomas HG, Wynns GC, Silverman DN (1986) Hydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine muscle. J Biol Chem 261: 10100–10103

    PubMed  CAS  Google Scholar 

  • Tu CK, Wynns GC, Silverman DN (1981) Inhibition by cupric ions of 18Oexchange catalyzed by human carbonic anhydrase II. Relation to the interaction between carbonic anhydrase and hemoglobin. J Biol Chem 256: 9466–9470

    PubMed  CAS  Google Scholar 

  • Venkatasubban KS, Silverman DN (1980) Carbon dioxide hydration activity of carbonic an-hydrase in mixtures of water and deuterium oxide. Biochemistry 19: 4984–4989

    Article  PubMed  CAS  Google Scholar 

  • Vidgren J, Kiljas A, Walker NPC (1990) Refined structure of the acetazolamide complex of human carbonic anhydrase II at 1.9 Å. Int J Biol Macromol 12: 342–344

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Liljas A, Jonsson B-H, Lindskog S (1993a) Structural analysis of the zinc hydroxide – Thr-199 – Glu-106 hydrogen bond network in human carbonic anhydrase II. Proteins Struc Funct Genet 17: 93–106

    Article  CAS  Google Scholar 

  • Xue Y, Vidgren J, Svensson S, Liljas A, Jonsson B-H, Lindskog S (1993b) Crystallographic analysis of Thr→200 His human carbonic anhydrase II and its complex with the substrate, HCOi. Proteins Struct Funct Genet 15: 80–87

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Lindskog, S., Silverman, D.N. (2000). The catalytic mechanism of mammalian carbonic anhydrases. In: Chegwidden, W.R., Carter, N.D., Edwards, Y.H. (eds) The Carbonic Anhydrases. EXS 90, vol 90. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8446-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8446-4_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9570-5

  • Online ISBN: 978-3-0348-8446-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics