Skip to main content

Swing Foot Pose Control Disturbance Overcoming Algorithm Based on Reference ZMP Preview Controller for Improving Humanoid Walking Stability

  • Conference paper
  • First Online:
RoboCup 2023: Robot World Cup XXVI (RoboCup 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14140))

Included in the following conference series:

  • 100 Accesses

Abstract

To improve the walking stability of humanoid robots, it is necessary to increase the performance of overcoming external disturbance. In this paper, step modification strategy based on the predicted Zero Moment Point (ZMP) is applied to the Reference ZMP Preview Controller to increase the overcoming disturbance performance of humanoid robots. It also uses a Horizon Swing Foot strategy that can keep the ankle of the Swing phase parallel to the ground to increase stability when changing the Step. The proposed algorithm was verified through experiments and confirmed that the Horizon Swing Foot strategy can overcome up to 14.85 kg\(\cdot \)m/s of impact. By applying the proposed algorithm to humanoid robots, it is expected to increase bipedal walking stability and prevent damage and safety accidents caused by the robot falling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, Q., et al.: Planning walking patterns for a biped robot. IEEE Trans. Robot. Autom. 17(3), 280–289 (2001)

    Article  Google Scholar 

  2. Vukobratović, M., Stepanenko, J.: On the stability of anthropomorphic systems. Math. Biosci. 15(1–2), 1–37 (1972)

    Article  Google Scholar 

  3. Kajita, S., Hirukawa, H., Harada, K., Yokoi, K.: Introduction to Humanoid Robotics, vol. 101, p. 2014. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54536-8

    Book  Google Scholar 

  4. Kamioka, T., Kaneko, H., Takenaka, T., Yoshiike, T.: Simultaneous optimization of ZMP and footsteps based on the analytical solution of divergent component of motion. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1763–1770. IEEE (2018)

    Google Scholar 

  5. Feng, S., Xinjilefu, X., Atkeson, C.G., Kim, J.: Robust dynamic walking using online foot step optimization. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5373–5378. IEEE (2016)

    Google Scholar 

  6. Seekircher, A., Visser, U.: An adaptive lipm-based dynamic walk using model parameter optimization on humanoid robots. KI-Künstliche Intelligenz 30(3–4), 233–244 (2016)

    Article  Google Scholar 

  7. Graf, C., Röfer, T.: A center of mass observing 3D-LIPM gait for the RoboCup Standard Platform League humanoid. In: Röfer, T., Mayer, N.M., Savage, J., Saranli, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 102–113. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32060-6_9

  8. YITAEK KIM. (2019). The Development of the Preview-Control walking method for a stable bipedal walking of an adult size humanoid robot (Master dissertation, Hanyang Univ)

    Google Scholar 

  9. Urata, J., Nshiwaki, K., Nakanishi, Y., Okada, K., Kagami, S., Inaba, M.: Online decision of foot placement using singular LQ preview regulation. In: 2011 11th IEEE-RAS International Conference on Humanoid Robots, pp. 13–18. IEEE (2011)

    Google Scholar 

  10. Stephens, B.: Humanoid push recovery. In: 2007 7th IEEE-RAS International Conference on Humanoid Robots, pp. 589–595. IEEE (2010)

    Google Scholar 

  11. Mesesan, G., Englsberger, J., Ott, C.: Online DCM trajectory adaptation for push and stumble recovery during humanoid locomotion. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 12780–12786. IEEE (2021)

    Google Scholar 

  12. Han, L., Chen, X., Yu, Z., Li, Q., Meng, L., Huang, Q.: Ankle torque control for steady walking of humanoid robot. In: 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 395–400. IEEE (2019)

    Google Scholar 

  13. Reichenberg, P., Röfer, T.: Step adjustment for a robust humanoid walk. In: : Alami, R., Biswas, J., Cakmak, M., Obst, O. (eds.) RoboCup 2021. LNCS, vol. 13132, pp. 28–39. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98682-7_3

  14. Guadarrama-Olvera, J.R., Kajita, S., Cheng, G.: Preemptive foot compliance to lower impact during biped robot walking over unknown terrain. IEEE Robot. Autom. Lett. 7(3), 8006–8011 (2022)

    Article  Google Scholar 

  15. Yoo, S.M., Hwang, S.W., Kim, D.H., Park, J.H.: Biped robot walking on uneven terrain using impedance control and terrain recognition algorithm. In: 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), pp. 293–298. IEEE (2018)

    Google Scholar 

  16. Jeong, H., Lee, I., Oh, J., Lee, K.K., Oh, J.H.: A robust walking controller based on online optimization of ankle, hip, and stepping strategies. IEEE Trans. Rob. 35(6), 1367–1386 (2019)

    Article  Google Scholar 

  17. Mousavi, F.S., Masouleh, M.T., Kalhor, A., Ghassemi, P.: Push recovery methods based on admittance control strategies for a NAO-H25 humanoid. In: 2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM), pp. 451–457. IEEE (2018)

    Google Scholar 

  18. Shafiee-Ashtiani, M., Yousefi-Koma, A., Mirjalili, R., Maleki, H., Karimi, M.: Push recovery of a position-controlled humanoid robot based on capture point feedback control. In: 2017 5th RSI International Conference on Robotics and Mechatronics (ICRoM), pp. 126–131. IEEE (2017)

    Google Scholar 

  19. Kim, J., Park, B., Lee, H., Park, J.: Hybrid position/torque ankle controller for minimizing ZMP error of humanoid robot. In: 2021 18th International Conference on Ubiquitous Robots (UR), pp. 211–216. IEEE (2021)

    Google Scholar 

  20. Li, Q., Yu, Z., Chen, X., Meng, F., Meng, L., Huang, Q.: Dynamic torso posture compliance control for standing balance of position-controlled humanoid robots. In: 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 529–534. IEEE (2020)

    Google Scholar 

  21. Aslan, E., Arserim, M.A., Uçar, A.: Development of Push-Recovery control system for humanoid robots using deep reinforcement learning. Ain Shams Eng. J. 14, 102167 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the MOTIE (Ministry of Trade, Industry, and Energy) in Korea, under (global) (P0017311) supervised by the Korea Institute for Advancement of Technology (KIAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeakweon Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chung, E. et al. (2024). Swing Foot Pose Control Disturbance Overcoming Algorithm Based on Reference ZMP Preview Controller for Improving Humanoid Walking Stability. In: Buche, C., Rossi, A., Simões, M., Visser, U. (eds) RoboCup 2023: Robot World Cup XXVI. RoboCup 2023. Lecture Notes in Computer Science(), vol 14140. Springer, Cham. https://doi.org/10.1007/978-3-031-55015-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55015-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55014-0

  • Online ISBN: 978-3-031-55015-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics